
Optimized
homomorphic

evaluation of Boolean
functions

Nicolas Bon
Joint work with David Pointcheval and Matthieu Rivain

Outline

1 . Introduction to Fully Homomorphic Encryption

2. Introduction to the TFHE cipher

3. Our contributions : a framework for fast evaluation of Boolean functions

4. Bonus : the Bootstrapping and its transformation

Outline

1 . Introduction to Fully Homomorphic Encryption

2. Introduction to the TFHE cipher

3. Our contributions : a framework for fast evaluation of Boolean functions

4. Bonus : the Bootstrapping and its transformation

What is FHE ?

Client Server

The client wants to use the neural network on its data.

What is FHE ?

Client Server

The client encrypts its data to protect its confidentiality during
transfer.

What is FHE ?

Client Server

The server gets the encrypted
data.

What is FHE ?

Client Server

The server needs to decrypt to be able to use the neural
network, which breaks confidentiality !

FHE is a solution to this problem

- The encryption is made with a homomorphic scheme

- In this scenario, the server runs a homomorphized version of the neural network

- All computations can be performed without any decryption or information leak.

Client Server

Evaluation key

FHE is a solution to this problem

The client encrypts its data and crafts an evaluation key that will be used
in the homomorphized neural network.

Client Server

FHE is a solution to this problem

The server gets the encrypted data and the evaluation key.

Client Server

FHE is a solution to this problem

Thanks to the evaluation key, the server evaluates the neural network on
the data without decryption and gets a result in an encrypted form

Client Server

FHE is a solution to this problem

The server sends back the encrypted result to the client.

Client Server

FHE is a solution to this problem

The client can then decrypt the result !

Main challenges of FHE

Performances: Overhead in time and in size

Noise control: risk of losing correctness

Limited set of supported homomorphic
operations

Outline

1 . Introduction to Fully Homomorphic Encryption

2. Introduction to the TFHE cipher

3. Our contributions : a framework for fast evaluation of Boolean functions

4. Bonus : the Bootstrapping and its transformation

TFHE : description of the scheme

- Very fast by FHE standards

- Potentially infinite series of
operations

- Evaluation of encrypted
look-up tables : possibility to
evaluate any univariate
function

- But precisions on plaintexts
limited to a few bits

TFHE : description of the scheme

Encrypted space: Clear space:

 has a size of few bits.

TFHE : description of the scheme

Natural embedding of in

TFHE : description of the scheme

Encoding of a message

TFHE : description of the scheme

Encoding of a message

Gaussian Noise

TFHE : description of the scheme

Sampling of a mask :

, , ,…

TFHE : description of the scheme

Sampling of a mask :

, , ,…

Secret key:

TFHE : description of the scheme

Construction of ciphertexts :

, , ,… ,

TFHE : description of the scheme

Construction of ciphertexts :

, , ,… ,

TFHE: available operations

- Programmable Bootstrapping

Resets the noise level

Evaluates any Look-up table on the
ciphertext

BUT slow and heavy operation

- Sum on

- External product on by a clear constant

Natural approach of Boolean function evaluation:
gate bootstrapping

x1 x2 x3 x4

y

- See Boolean functions as Boolean circuits

- Each bit is a ciphertext

- Each gate is a 2-input Look-up table

Natural approach of Boolean function evaluation:
gate bootstrapping

x1 x2 x3 x4

y

- See Boolean functions as Boolean circuits

- Each bit is a ciphertext

- Each gate is a 2-input Look-up table

Problem: each gate costs 1 Programmable Bootstrapping

Outline

1 . Introduction to Fully Homomorphic Encryption

2. Introduction to the TFHE cipher

3. Our contributions : a framework for fast evaluation of Boolean functions

4. Bonus : the Bootstrapping and its transformation

Overview of our strategy
- Pick a (better if prime) and embed each bit in

x1 x2 x3

Overview of our strategy

- Compute the sum (fast !) and label the sectors according to the
function we want to evaluate

- Pick a (better if prime) and embed each bit in

x1 x2 x3

x1 x2 x3

Bootstrapping

y

Overview of our strategy

- Compute the sum (fast !) and label the sectors according to the
function we want to evaluate

- Compute a Bootstrapping on the sum and get a fresh ciphertext

- Pick a (better if prime) and embed each bit in

x1 x2 x3

Bootstrapping

y

Overview of our strategy

- Compute the sum (fast !) and label the sectors according to the
function we want to evaluate

- Compute a Bootstrapping on the sum and get a fresh ciphertext

- Pick a (better if prime) and embed each bit in

We do not use the notion of circuit anymore
We evaluate Boolean functions in one single bootstrapping no matter the number of inputs
We do not need to extend the LUT to fit more inputs

Overview of our solution

x1 x2 x3

Bootstrapping

y

For a given function:

- How to select encodings such that the sum is valid (i.e. no overlap between true
and false ciphertexts) ?

- Which p to use ? (the lower the better)

Our search algorithm finds the optimal solution to this problem

Formalization of the notion of p-encodings

A p-encoding is a function

Formalization of the notion of p-encodings

A p-encoding is a function

Boolean function on p-encodings

Let be three p-encodings.

Let be a Boolean function:

Boolean function on p-encodings

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0

1 0 0

0 1 0

Boolean function on p-encodings

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0

1 0 0

0 1 0

Boolean function on p-encodings

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0

1 0 0

0 1 0

Boolean function on p-encodings

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0 1

1 0 0

0 1 0

Boolean function on p-encodings

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0 1

1 0 0

0 1 0

Boolean function on p-encodings

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0 1

1 0 0 0

0 1 0

Boolean function on p-encodings

Truth table of f:

b1 b2 b3 f(b1, b2, b3)

0 0 0 1

1 0 0 0

0 1 0

The encodings are valid if the
red and the green parts do
not overlap after all the lines
have been treated.

Problem : for a given function, how to find a valid set of p-encodings (and the best
p) ?

=> Exhaustive search. But some restrictions have to be made in the search space.

=> We restrict the search to p-encodings with form:

with no loss of generality

Boolean function on p-encodings

with:

An other point of view on the problem

The encodings have the form

The truth table of the function can be rewritten as the linear system:

An other point of view on the problem

The encodings have the form

We can apply the coloration associated to the Boolean function f:

An other point of view on the problem

By writing all the inequations we get:

The search algorithm

The search algorithm

Pruning using the
set of constraints

The search algorithm

Pruning using the
set of constraints

The search algorithm

Pruning using the
set of constraints

The search algorithm

… until we find a
path of length

The search algorithm

- The search algorithm finds an optimal solution for a given .

- To identify relevant values for we developed an heuristic method
that finds an upper bound on the optimal

Application to cryptographic primitives

- Efficient solutions for acceptable modulus for some lightweight block ciphers
and hash functions

- Our implementation beats the state of the art

- But no solution for AES !

- For use-cases such as transciphering, OPRF, …

Extension to bigger circuits (e.g. AES)

Extension to AES

Extension to AES

AES: performances

- 210 seconds on one thread on a laptop (beats state of the art). Highly
parallelizable

- Total of 7040 Bootstrappings (with p=11).

Conclusion

- New Framework to evaluate Boolean functions in TFHE

- One bootstrapping per function, with any number of input. Fixed size.

- Optimal algorithm to find a solution for a given function

- Heuristic to split bigger circuits into evaluable functions

- Adaptation of the bootstrapping to remove the padding bit

Outline

1 . Introduction to Fully Homomorphic Encryption

2. Introduction to the TFHE cipher

3. Our contributions : a framework for fast evaluation of Boolean functions

4. Bonus : the Bootstrapping and its transformation

How does the bootstrapping works ?

We use polynomials in the ring

Let

In this ring, something interesting happen:

How does the bootstrapping works ?

We use polynomials in the ring

Let

In this ring, something interesting happen:

and:

How does the bootstrapping works ?

Let be a ciphertext. It lives in .

First thing to do is to change its modulus to send it in

Now if we compute:

We can retrieve by extracting the first coefficient.

It gets negated.

This is known as the negacyclicity problem

How does the bootstrapping works ?

But if

How does the bootstrapping works ?

If we choose we get an evaluation of Look-up Table !

And we have control of the noise in the evaluation key and the
coefficients of the polynomials, so we can reset the noise at a

nominal level at the same time !

How does the bootstrapping works

How does the bootstrapping works ?

Adaptation of the bootstrapping

- Common solution: fix the MSB to zero to stay in the upper part of the torus

- Problem: values may overflow in the MSB during homomorphic linear
computations.

- Our solution uses odd values for p so the problem vanishes.

Adaptation of the bootstrapping

Density of probability is not uniform across the torus:

Adaptation of the bootstrapping

With odd values, the “dense spots” do not face each others:

Adaptation of the bootstrapping

Solution:

Adaptation of the bootstrapping

Solution: +-
-

-

-
-

+

+

+
+

Adaptation of the bootstrapping

Solution:

https://eprint.iacr.org/2023/1589
For more details

Thank you !

Slides by Nicolas Bon

Mathematical figures built with Manim
(https://github.com/ManimCommunity/manim)

Icons by Freepik, kliwir art, Those Icons and kmg design on Flaticons
(https://www.flaticon.com/fr/)

