CRYPTOCECXPERTS

WE INNOVATE TO SECURE YOUR BUSINESS

Optimized
homomorphic
evaluation of Boolean
functions

Nicolas Bon

Joint work with David Pointcheval and Matthieu Rivain

Outline

1. Introduction to Fully Homomorphic Encryption
2. Introduction to the TFHE cryptosystem
3. Our contributions : a framework for fast evaluation of Boolean functions

4. Bonus : the Bootstrapping and its transformation

Outline

1. Introduction to Fully Homomorphic Encryption
2. Introduction to the TFHE cryptosystem
3. Our contributions : a framework for fast evaluation of Boolean functions

4. Bonus : the Bootstrapping and its transformation

Server

Client

The client wants to use the neural network on its data.

Client Server

®
A

The client encrypts its data to protect its confidentiality during
transfer.

Server

Client

The server gets the encrypted

data.

Client Server

®
A

The server needs to decrypt to be able to use the neural
network, which breaks confidentiality !

FHE is a solution to this problem

- The encryption is made with a homomorphic scheme
- In this scenario, the server runs a homomorphized version of the neural network

- All computations can be performed without any decryption or information leak.

Client Server

; ED

Evaluation key

£

The client encrypts its data and crafts an evaluation key that will be used
in the homomorphized neural network.

Client Server

£

The server gets the encrypted data and the evaluation key.

Client Server

£

Thanks to the evaluation key, the server evaluates the neural network on
the data and gets a result in an encrypted form

Client Server

The server sends back the encrypted result to the client.

Client Server

The client can then decrypt the result !

Performances: Overhead in time and in size

Noise control: risk of losing correctness

Limited set of supported homomorphic
operations

Outline

1. Introduction to Fully Homomorphic Encryption
2. Introduction to the TFHE cryptosystem
3. Our contributions : a framework for fast evaluation of Boolean functions

4. Bonus : the Bootstrapping and its transformation

TFHE : description of the scheme

TFHE: Fast Fully Homomorphic Encryption
over the Torus*

Very fast by FHE standards

Haria Chillotti', Nicolas Gama®?, Mariya Georgieva®?, and Malika
Izabachéne®

Potentially infinite series of ! imec-COSIC, KU Louwen,

Kasteelpark Arenberg 10. Bus 2452, B-3001 Leuven-Heverlee, Belgium
3 ilaria.chillotti@kuleuven.be
Operatlons 2 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université
Paris-Saclay. 78035 Versailles, France
* Inpher, Lausanne, Switzerland
nicolas@inpher.io, mariya@inpher.io
4 EPFL, Route Cantonal, CH-1015 Lausanne, Switzerland

Evaluation Of encrypted 5 CEA, LIST, Point Couf‘rier.ln. 91191 Gif-sur-Yvette Cedex, France
look-up tables : possibility to ' '
evaluate any univariate Abstract. This work describes a fast fully homomorphic encryption

. scheme over the torus (TFHE), that revisits, generalizes and improves the
functlon fully homomorphic encryption (FHE) based on GSW and its ring vari-
ants. The simplest FHE schemes consist in bootstrapped binary gates.
In this gate bootstrapping mode, we show that the scheme FHEW of [29]
can be expressed only in terms of external product between a GSW and
a LWE ciphertext. As a consequence of this result and of other optimiza-

But precisions On plaintexts tions, we decrease the running time of their bootstrapping from 690ms

. . . to 13ms single core, using 16MB bootstrapping key instead of 1GB, and
llmlt ed t O a f eW blt S preserving the security parameter. In leveled homomorphic mode, we
propose two methods to manipulate packed data, in order to decrease

the ciphertext expansion and to optimize the evaluation of look-up tables

and arbitrary functions in RingGSW based homomorphic schemes. We

also extend the automata logic, introduced in [31]. to the efficient lev-

eled evaluation of weighted automata, and present a new homomorphic

counter called TBSR, that supports all the elementary operations that

occur in a multiplication. These improvements speed-up the evaluation

of most arithmetic functions in a packed leveled mode, with a noise over-

head that remains additive. We finally present a new circuit bootstrap-

nina that canverte IWE cinhortovic inta lowonnico Rinal1QW cinhortovie

TFHE : description of the scheme

Clear space: T, Encrypted space: 1

P has a size of few bits.

TFHE : description of the scheme

Natural embedding of Tp in Tq

TFHE : description of the scheme

Encoding of a message 11 € Tp

TFHE : description of the scheme

Encoding of a message 1 € Tp

Gaussian Noise

TFHE : description of the scheme

Sampling of a mask :

Sampling of a mask :

Secret key:

TFHE : description of the scheme

Construction of ciphertexts:

TFHE : description of the scheme

Construction of ciphertexts:

b= (a,s)+m+e

- SumonT,
. a\!
- External product on Tp by a clear constant .

Resets the noise level VCH)U

- Programmable Bootstrapping ~ Evaluates any Look-up table on the (\Eﬁ?ﬂf
ciphertext

BUT slow and heavy operation 1@

TFHE only allows small precisions

®
700 A

600 A

S
S

timing (ms)
8
o

precision (bits)

Natural approach of Boolean function evaluation:

gate bootstrapping
X1Xx2 X3 X4
l l - See Boolean functions as Boolean circuits
& - Each bit is a ciphertext
l ! - Each gate is a 2-input Look-up table
D
|

Natural approach of Boolean function evaluation:

gate bootstrapping
X1x2 X3 x4
l l - See Boolean functions as Boolean circuits
& - Each bit is a ciphertext
l ! - Each gate is a 2-input Look-up table
D
|

& Problem: each gate costs 1 Programmable Bootstrapping

Outline

1. Introduction to Fully Homomorphic Encryption
2. Introduction to the TFHE cryptosystem
3. Our contributions : a framework for fast evaluation of Boolean functions

4. Bonus : the Bootstrapping and its transformation

Overview of our strategy

- Pick a p(better if prime) and embed each bit in T,

- Pick a p(better if prime) and embed each bit in T

- Compute the sum (fast!) and label the sectors according to the
function we want to evaluate

Pick a p(better if prime) and embed each bitin T},

Compute the sum (fast !) and label the sectors according to the
function we want to evaluate

Compute a Bootstrapping on the sum and get a fresh ciphertext

()
Bootstrapping —— O
A

- Pick a p(better if prime) and embed each bit in T

- Compute the sum (fast!) and label the sectors according to the
function we want to evaluate

- Compute a Bootstrapping on the sum and get a fresh ciphertext

We do not use the notion of circuit anymore
We evaluate Boolean functions in one single bootstrapping no matter the number of inputs
We do not need to extend the LUT to fit more inputs

Bootstrapping

Bootstrapping ——

For a given function:

- How to select encodings such that the sum is valid (i.e. no overlap between true
and false ciphertexts) ?
- Which p to use ? (the lower the better)

Our search algorithm finds the optimal solution to this problem

A p-encoding is a function £ : B s 2%»

(
0 — {i fo<i<iy

E =X
\1 — {@}ogigll

Formalization of the notion of p-encodings

A p-encoding is a function £ : B s 2%»

)
0 — {afo<i<iy
\1 — { Bi Yo<i<iy

Boolean function on p-encodings

Let f beaBoolean function: f : B3 — B

Let &1, &9, E3 be three p-encodings.

Boolean function on p-encodings

Truth table of f:

b1

b2

b3

f(b1, b2, b3)

Boolean function on p-encodings

Truth table of f:

bl | b2 | b3 | f(b1, b2, b3)

1 0 0

0 1 0

Boolean function on p-encodings

Truth table of f:

bl | b2 | b3 | f(b1, b2, b3)

1 0 0

0 1 0

Boolean function on p-encodings

Truth table of f:

bl | b2 | b3 | f(b1, b2, b3)
1

1 0 0

0 1 0

Boolean function on p-encodings

Truth table of f:

bl | b2 | b3 | f(b1, b2, b3)

Boolean function on p-encodings

Truth table of f:

f(b1, b2, b3)

Boolean function on p-encodings

Truth table of f:

f(b1, b2, b3)

The encodings are valid if the
red and the green parts do
not overlap after all the lines
have been treated.

Problem : for a given function, how to find a valid set of p-encodings (and the best
p)?

=> Exhaustive search. But some restrictions have to be made in the search space.

=> We restrict the search to p-encodings with form:

0~ {0} e JOom {0}
| s {d} with: & = Lo (1)

with no loss of generality

0+— {0}

The encodings have the form &; =

The truth table of the function can be rewritten as the linear system:

(0-dy +0-dy+---+0-dp =9
<O'd1+0°d2—|—”°—|—1'dg:?“1

\1.d1_|_1.d2_|_..._|_1...d€:742£

0+— {0}

The encodings have the form &; =

We can apply the coloration associated to the Boolean function f:

(0-dy +0-dy+---+0-de =g
<O'd1+0°d2—|—”°—|—1'dg:7“1

\1.d1_|_1.d2_|_..._|_1...d€:rr2£

By writing all the inequations EE we get:

c%l) cdy + - (1) -d; #0 mod p
) p
c§>-d1+---+c§2>-dl7&o mod p with ¢ e {0, +1)

The search algorithm
dy =1

T

2

The search algorithm
dy =1

/\ d2 Pruning using the

set of constraints

The search algorithm
dy =1

Pruning using the
set of constraints

d3

The search algorithm
dy =1

d3

Pruning using the
set of constraints

The search algorithm
dy =1

... until we find a
path of length /

- The search algorithm finds an optimal solution for a given p.

- To identify relevant values for P we developed an heuristic method
that finds an upper bound on the optimal p

Sampling values for d;’s in 7!

Check divisibility of the result by P.

The smallest p that does not divide any row gives an upper bound on the optimal
solution

(0-dy+0-dy+---+0-dy =19
<Od1—|—0d2—|——|—1dg:’l“1

\1.d1_|_1.d2_|_..._|_1..-d£:7"2£

- For use-cases such as transciphering, OPREF, ...

- Efficient solutions for acceptable modulus for some lightweight block ciphers
(namely SIMON, Trivium and ASCON) and hash function SHA-3.

- Our implementation beats the state of the art for these primitives.

- But no solution for AES: the circuit of the sbox is too complex !

Experimental results

Primitive | Section or Other work | Performances
Gate Bootstrapping 174 s
One full run of SIMON |BSS+23] 1 128 s
Our work (Section 7.1) 10s
Gate Bootstrapping 1498 s
One warm-up phase of Trivium (*) [BOS23] (estimation on our machine) 53 s
Our work (Section 7.2) 32.8 s
. Gate Bootstrapping 30.7 min
One Full Keccak permutation (x) Bhir work (Saction 7.5) T
: Y Gate Bootstrapping 200s
(ne:. Aseon. hashing {#) Our work (Section 7.4) 92 s

Extension to bigger circuits

X1x2 x3 x4 Xx5x6 x7 x8

x1x2 x3 x4 X5X6 X7 x8 VY VVirvy vy

& & & & Gadget 1 Gadget 2

vy V v

Encoding Encoding
Switching Switching

= v v

Dl | &

* * Gadget 3

<<t
<

Extension to bigger circuits (e.g. AES)

om0
.k dad
& e

HS

®
Q
9
®
®
&)

Extension to bigger circuits (e.g. AES)

Extension to bigger circuits (e.g. AES)

AES: performances

[GHS12] { 18 min

One full evaluation of AES-128 [CLT14] t 5 min
(e = 2723) on one thread [TCBS23] 270 s
Our work (Section 7.5) 103 s

One full evaluation of AES-128 Cae Boot.strappmg . 23?1 i
(6 =2~ on oriethresd Our work (R.eal m.lpl.emen!:amon) 135 s
Our work (Theoretical timing with two keys) 105 s

One evaluation of the AES s-box

36 PBS(1; 4)

A full run of AES-128

5760 PBS(11,4) + 1280 PBS(2,1)

New Framework to evaluate Boolean functions in TFHE

One bootstrapping per function, with any number of input. Fixed size.
Optimal algorithm to find a solution for a given function

Heuristic to split bigger circuits into evaluable functions

Adaptation of the bootstrapping to remove the padding bit

Outline

1. Introduction to Fully Homomorphic Encryption
2. Introduction to the TFHE cryptosystem
3. Our contributions : a framework for fast evaluation of Boolean functions

4. Bonus : the Bootstrapping and its transformation

How does the bootstrapping works ?

We use polynomials in the ring Z[X]/(X" +1) :
Letv(X)=vog+wvy - X +--- —|—UN_1XN_1

In this ring, something interesting happen:

X7 0(X)=vg +0q41 - X+ ... 1if: a € [0, N]

How does the bootstrapping works ?

We use polynomials in the ring Z[X]/(X" +1) :
Letv(X)=vog+wvy - X +--- —|—UN_1XN_1

In this ring, something interesting happen:

X% v(X)=vs +vgr1 - X+ ...

and:

X v(X)=—v4—v411- X —...

if: a € [0, N|

if: a € [IN,2N|

How does the bootstrapping works ?

Let [l be a ciphertext. It lives in Zj.

First thing to do is to change its modulus to send itin Zo

m+e_‘

i = {ZN
q

How does the bootstrapping works ?

Now if we compute:

— U o e, o~
X ouX)=v+... i p <N
We can retrieve vj; by extracting the first coefficient.
But if ft > N : It gets negated.

This is known as the negacyclicity problem

How does the bootstrapping works ?

If we choose v; = f (/j) we get an evaluation of Look-up Table !

And we have control of the noise in the evaluation key and the
coefficients of the polynomials, so we can reset the noise at a
nominal level at the same time !

How does the bootstrapping works

How does the bootstrapping works ?

Common solution: fix the MSB to zero to stay in the upper part of the torus

Problem: values may overflow in the MSB during homomorphic linear
computations.

Our solution uses odd values for p so the problem vanishes.

Adaptation of the bootstrapping

Density of probability is not uniform across the torus:

Adaptation of the bootstrapping

Adaptation of the bootstrapping

Solution:

Adaptation of the bootstrapping

Solution:

Adaptation of the bootstrapping

CRYPTOCEXPERTS

WE INNOVATE TO SECURE YOUR BUSINESS ENS

ECOLE NORMALE
SUPERIEURE

Thank you'!

https://eprint.iacr.org/2023/1589

For more details

Slides by Nicolas Bon

Mathematical figures built with Manim
(https://github.com/ManimCommunity/manim)

Icons from Flaticons (https://www.flaticon.com/fr/)

