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Part 1

State of the Art



State of the Art

Fully Homomorphic Encryption



Cryptography

Encryption:

Enc

Decryption:

Dec
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The three states of data

Data at rest
• Hard Drives
• Cloud Storage

Data in transit
• Internet Traffic
• Messaging / E-mails

Data at work
• Server-side
computations

• AI-based services

Question

How to ensure secure computations ?
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Fully Homomorphic Encryption
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History of FHE

1978 2009 present

First
mention

Partially Homomorphic:
• Not every operation is
supported

• Finite computational depth

[Gen09]

Fully Homomorphic!
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The Necessity of Bootstrapping

Server
⃗𝑐0

⃗𝑐1

⃗𝑐2

+

×

Bootstrapping

⃗𝑐3

+
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Gentry’s blueprint for Bootstrapping

𝑚

EncFHE

Cleartext Space

⃗𝑐

Encrypted Space 1

DecFHE
⃗𝑐 ⃗𝑐

Encrypted Space 2
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State of the Art

TFHE: FHE over the Torus



TFHE: Description of the scheme

Clear Space: 𝕋𝑝
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𝑝 has a size of a few bits.

Encrypted Space: 𝕋𝑞
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𝑞 = 232 or 264.
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TFHE:Description of the scheme

Natural Embedding of 𝕋𝑝 in 𝕋𝑞
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TFHE:Description of the scheme

Encoding of a message𝑚 ∈ 𝕋𝑝
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Adds Random Gaussian Noise
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TFHE:Description of the scheme

Encoding of a message𝑚 ∈ 𝕋𝑝
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Too much noise causes decryption error!
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Description of the scheme: Encryption Algorithm

Sampling of the secret key:

⃗𝑠 = (0, 1,… , 0)
$
← 𝔹𝑛

Sampling of a mask:

, , … ,⃗𝑎 =
$
← 𝕋𝑛𝑞
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Description of the scheme: Encryption Algorithm

Construction of ciphertext:

, , … ,⃗𝑐 =
$
← 𝕋𝑛+1𝑞

,

𝑏 = ⟨ ⃗𝑎, ⃗𝑠⟩ + Δ𝑚 + 𝑒
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Description of the scheme: Encryption Algorithm

Construction of ciphertext:

, , … ,

Decryption:

1. Recover the noisy message with Δ𝑚 + 𝑒 = 𝑏 − ⟨ ⃗𝑎, ⃗𝑠⟩.

2. Round to the closest plaintext: 𝑚 = ⌊Δ𝑚+𝑒
Δ

⌉.
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Homomorphic Operations

Additions of ciphertexts:

𝑚

𝑚′

+ 𝑚+𝑚′

Multiplication of a ciphertext with a
constant:

𝑚

𝜆

× 𝜆 × 𝑚
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Programmable Bootstrapping

Main Feature: the Programmable Bootstrapping

𝑚 PBS

𝑓 ∶ 𝕋𝑝 ↦ 𝕋𝑝

𝑓(𝑚)

PhD Defense 13/46



Problem: PBS is very slow in large spaces

Figure: Degradation of the timing of a PBS, with respect to log2(𝑝).
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State of the Art

Bootstrapping and Negacyclicity



Bootstrapping Outline

Decryption procedure is done is two steps:
• Computing 𝑏 − ⟨ ⃗𝑎, ⃗𝑠⟩ = 𝑚 + 𝑒

-> Easy

• Rounding to the closest plaintext: ⌊𝑚 + 𝑒⌉ = 𝑚.

-> More challenging

Question

How to perform rounding homomorphically?

PhD Defense 15/46



Bootstrapping Outline

Decryption procedure is done is two steps:
• Computing 𝑏 − ⟨ ⃗𝑎, ⃗𝑠⟩ = 𝑚 + 𝑒 -> Easy
• Rounding to the closest plaintext: ⌊𝑚 + 𝑒⌉ = 𝑚.

-> More challenging

Question

How to perform rounding homomorphically?

PhD Defense 15/46



Bootstrapping Outline

Decryption procedure is done is two steps:
• Computing 𝑏 − ⟨ ⃗𝑎, ⃗𝑠⟩ = 𝑚 + 𝑒 -> Easy
• Rounding to the closest plaintext: ⌊𝑚 + 𝑒⌉ = 𝑚. -> More challenging

Question

How to perform rounding homomorphically?

PhD Defense 15/46



Bootstrapping Outline

Decryption procedure is done is two steps:
• Computing 𝑏 − ⟨ ⃗𝑎, ⃗𝑠⟩ = 𝑚 + 𝑒 -> Easy
• Rounding to the closest plaintext: ⌊𝑚 + 𝑒⌉ = 𝑚. -> More challenging

Question

How to perform rounding homomorphically?

PhD Defense 15/46



Blind Rotation

Works in the polynomial ring ℤ[𝑋]/(𝑋𝑁 + 1) (with 𝑁 a power of two).

Let 𝑣(𝑋) = 𝑣0 + 𝑣1 ⋅ 𝑋 +⋯+ 𝑣𝑁−1𝑋𝑁−1 and 𝑎 ∈ ℤ2𝑁.

In this ring, something interesting happens:

𝑋−𝑎 ⋅ 𝑣(𝑋) = {
𝑣𝑎 + 𝑣𝑎+1 ⋅ 𝑋 + … if 𝑖 ∈ [0, 𝑁[.
−𝑣𝑎 − 𝑣𝑎+1 ⋅ 𝑋 + … if 𝑖 ∈ [𝑁, 2𝑁[

.
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Blind Rotation

Blind rotation allows to homomorphically remove the noise:

0
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8
0

1
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𝑋−4 ⋅ (

𝑣0 + 𝑣1𝑋 + 𝑣2𝑋2 + 𝑣3𝑋3 + 𝑣4𝑋4 + 𝑣5𝑋5 + 𝑣6𝑋6 + 𝑣7𝑋7 + 𝑣8𝑋8

)
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Blind Rotation

Blind rotation allows to homomorphically remove the noise:

0
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𝑣4 + 𝑣5𝑋 + 𝑣6𝑋2 + 𝑣7𝑋3 + 𝑣8𝑋4 − 𝑣0𝑋5 − 𝑣1𝑋6 − 𝑣2𝑋7 − 𝑣3𝑋8
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Blind Rotation

Blind rotation allows to homomorphically remove the noise:

0

1

2

3

4

5

6
7

8
0

1

2

𝑓(1) + 𝑓(2)𝑋 + 𝑓(2)𝑋2 + 𝑓(2)𝑋3 − 𝑓(0)𝑋4 − 𝑓(0)𝑋5 − 𝑓(0)𝑋6 − 𝑓(1)𝑋7 − 𝑓(1)𝑋8
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Blind Rotation

• Taking 𝑞 = 2𝑁 is unrealistic, so we modswitch the ciphertext from ℤ𝑞 to ℤ2𝑁.
• If the message is encoded lies between 𝑁 and 2𝑁, then the output will be wrong.

Bit of Padding:

Pragmatic solution: enforce the MSB of ciphertexts to zero.
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The bit-of-padding problem

+

Problem

The bit-of-padding technique prevents from using the linear homomorphism!
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Parity
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Parity

New Accumulator:
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Odd-Modulus Accumulator:
𝑓(0) −𝑓(3)−𝑓(3) 𝑓(1)𝑓(1) −𝑓(4)−𝑓(4) 𝑓(2)𝑓(2) −𝑓(0)
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Parity

New Accumulator:
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Takeaway:

Odd moduli naturally solve the negacyclicity problem!
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Contributions



Contributions

Acceleration of Homomorphic Boolean
Function



Gate Bootstrapping vs Look-Up Table

Gate Bootstrapping

⃗𝑐0 ⃗𝑐1 ⃗𝑐2 ⃗𝑐3

&

⊕

&

PBS

PBS

PBS

Problem: One Gate = One PBS.

Look-Up table

⃗𝑐0 ⃗𝑐1 ⃗𝑐2 ⃗𝑐3

&

⊕

&

PBS

Problem: The PBS becomes very slow.
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The 𝑝-encodings

A 𝑝-encoding is a function ℰ ∶ 𝔹 ∶↦ 2ℤ𝑝 .

ℰ ∶ {
0 ↦ {𝛼𝑖}0≤𝑖≤𝑙0
1 ↦ {𝛽𝑖}0≤𝑖≤𝑙1

0

1

2

3

4

5

6

7
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New Function Evaluation Algorithm

+ PBS

𝑏1 𝑏2 𝑏3 𝑓
0 0 0 0
1 0 0 1
0 1 0 0
⋮ ⋮ ⋮ ⋮
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Advantages of themethod

• One single bootstrapping to evaluate the whole function
• Plaintext space significantly smaller than 2ℓ

Takeaway:

Better scaling than the traditional approaches

PhD Defense 24/46



Boolean function on 𝑝-encodings

Question

For a given function 𝑓 ∶ 𝔹ℓ ↦ 𝔹, how to find a valid set of 𝑝-encodings
(and the best 𝑝)?

Exhaustive search is too costly when ℓ grows.

Reduction of the search space

If a solution exists, then it can be reduced to the form:

ℰ𝑖 = {
0 ↦ {0}
1 ↦ {𝑑𝑖}

with: ℰ0 = {
0 ↦ {0}
1 ↦ {1}
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Another point of view on the problem

Truth table of 𝑓:

𝑏1 𝑏2 𝑏3 𝑓(𝑏1, 𝑏2, 𝑏3)
0 0 0 0
1 0 0 1
0 1 0 0
⋮ ⋮ ⋮ ⋮

⎧⎪
⎨⎪
⎩

0 ⋅ 𝑑1 + 0 ⋅ 𝑑2 + 0 ⋅ 𝑑3 = 𝑟0
1 ⋅ 𝑑1 + 0 ⋅ 𝑑2 + 0 ⋅ 𝑑3 = 𝑟1
0 ⋅ 𝑑1 + 1 ⋅ 𝑑2 + 0 ⋅ 𝑑3 = 𝑟2

⋮
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Another point of view on the problem

By writing all the inequations ≠ we get:

⎧
⎪

⎨
⎪
⎩

𝑐(1)1 𝑑1 +⋯+ 𝑐(1)ℓ 𝑑ℓ ≢ 0 (mod 𝑝),
𝑐(2)1 𝑑1 +⋯+ 𝑐(2)ℓ 𝑑ℓ ≢ 0 (mod 𝑝),
⋮

𝑐(2
ℓ−1)

1 𝑑1 +⋯+ 𝑐(2
ℓ−1)

ℓ 𝑑ℓ ≢ 0 (mod 𝑝).
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The search algorithm

• Our search algorithm finds a solution for a given 𝑝.
• To identify relevant values for 𝑝, we developed a heuristicmethod that finds an
upper bound on the optimal 𝑝.
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Experimental Results

Primitive Implementation Performances

One full run of SIMON

𝑝 = 9

Gate Bootstrapping 174 s
[BSS+23] 128 s
Our work 10 s

One warm-up phase of Trivium

𝑝 = 9

Gate Bootstrapping 1498 s
[BOS23] (estimation on our machine) 53 s

Our work 32.8 s
One Full Keccak permutation

𝑝 = 3

Gate Bootstrapping 30.7 min
Our work 8.8 min

One Ascon hashing

𝑝 = 17

Gate Bootstrapping 200s
Our work 92 s

PhD Defense 29/46



Experimental Results

Primitive Implementation Performances

One full run of SIMON
𝑝 = 9

Gate Bootstrapping 174 s
[BSS+23] 128 s
Our work 10 s

One warm-up phase of Trivium

𝑝 = 9

Gate Bootstrapping 1498 s
[BOS23] (estimation on our machine) 53 s

Our work 32.8 s
One Full Keccak permutation

𝑝 = 3
Gate Bootstrapping 30.7 min

Our work 8.8 min
One Ascon hashing

𝑝 = 17
Gate Bootstrapping 200s

Our work 92 s

PhD Defense 29/46



Extension to larger circuits
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Performances of AES

One full evaluation of AES-128
(𝜖 = 2−23) on one thread

𝑝 = 17

[GHS12] † 18 min
[CLT14] † 5 min
[TCBS23] 270 s
Our work 103 s

One full evaluation of AES-128
(𝜖 = 2−40) on one thread

𝑝 = 17

Gate Bootstrapping 234 s
Our work (Real implementation) 135 s

Our work (Theoretical timing with two keys) 105 s
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Hippogryph: a better version of homomorphic AES

Tree
PBS

Tree
PBS

MVB MVB

𝒞

Linear Circuit

PB
S

PB
S

PB
S

PB
S

PB
S

PB
S

PB
S

PB
S

∑ ∑

SubBytes

D
ecom

poser
Re
co
m
po
se
r

PhD Defense 32/46



Contributions

Acceleration of large LUT Evaluation



Evaluation of large LUT

PBS is only efficient at small precision, so we cannot evaluate large LUT directly with it.

Question

How to decompose a LUT into small PBS operations?
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An analogy with side-channels protection

• To protect the evaluation of LUT (e.g. S-box of AES) against side-channel attacks,
masking is usually used.

• Masking AND gates is the most costly.
• Techniques to generate masked circuits minimizing the number of AND gates.

Question

Can we do the same, but minimizing the number of PBS calls?
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Formalization of the problem

𝑓 ∶ ℤ𝑡 ↦ ℤ𝑡′

Taking 𝑡 = 𝑠𝑛, we manipulate blocks of size 𝑠. If 𝑠 is not prime, we
encode them in 𝔽𝑝.

ℤ𝑠 ⊆ 𝔽𝑝
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Generation of a decomposition

Construction of a pool of derived random variables:

∀𝑗 ∈ {𝑛, 𝜆 − 1}, 𝑥𝑗 = 𝜙𝑗(𝑥0,… , 𝑥𝑗−1) = 𝜓𝑗 (
𝑗−1
∑
𝑘=0

𝛼𝑘 ⋅ 𝑥𝑘)

Layout of the decomposition:

𝑓(𝑥0,… , 𝑥𝑛−1) =
𝑡−1
∑
𝑖=0

(
𝑛+𝜆−1
∑
𝑗=0

𝛽𝑖,𝑗 ⋅ 𝑥𝑗) ⋅ (
𝑛+𝜆−1
∑
𝑘=0

𝑑𝑖,𝑘 ⋅ 𝑥𝑗)

• 𝑑𝑖,𝑘: generated at random
• 𝛽𝑖,𝑗: determined by the algorithm
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Cost of a decomposition

Homomorphic multiplications can be done with two calls of the PBS with function
𝑥 ↦ 𝑥2.
It comes from the identity: 𝑥𝑦 = 1

4
((𝑥 + 𝑦)2 − (𝑥 − 𝑦)2).

Cost of a decomposition

#PBS = 𝜆 + 2𝑡
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Determinations of the 𝛽 ’s

𝑠𝑛
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⎛
⎜
⎜
⎜
⎝

𝑥(0)0 ⋅ ⟨ ⃗𝑑𝑖, ⃗𝑥(0)⟩ … 𝑥(0)𝑛+𝜆−1 ⋅ ⟨ ⃗𝑑𝑖, ⃗𝑥(0)⟩

𝑥(1)0 ⋅ ⟨ ⃗𝑑𝑖, ⃗𝑥(1)⟩ … 𝑥(1)𝑛+𝜆−1 ⋅ ⟨ ⃗𝑑𝑖, ⃗𝑥(1)⟩
⋮ ⋮ ⋮

𝑥(𝑠
𝑛−1)

0 ⋅ ⟨ ⃗𝑑𝑖, ⃗𝑥(𝑠𝑛−1)⟩ … 𝑥(𝑠
𝑛−1)

𝑛+𝜆−1 ⋅ ⟨ ⃗𝑑𝑖, ⃗𝑥(𝑠𝑛−1)⟩

⎞
⎟
⎟
⎟
⎠

and: ⃗𝑑𝑖 = (𝑑𝑖,0,… , 𝑑𝑖,𝑛+𝜆−1).
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Performances
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Contributions

Transciphering with Transistor



A solution to ciphertext expansion: Transciphering

Client

EncSym

EncFHE

Server

DecSym

No ciphertext expansion!
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A solution to ciphertext expansion: Transciphering

We propose a new symmetric cipher, that shows good performances in the
homomorphic domain.
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Design of Transistor

Prime field: 𝔽17

𝒦 (Key schedule)

𝒲 (whitening LFSR)
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(c) MC. (d) 𝜙.
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MixColumns

The matrix we chose for MixColumns is:

𝑀 = [
2 1 1 1
1 −1 1 −2
1 1 −2 −1
1 −2 −1 1

] .

• Matrix MDS to ensure optimal diffusion,
• Symmetric,
• Minimal ℓ2-norm of 7→ important for noise management.
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Design of Transistor
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Silent LFSR

LFSR

• Naive approach : linearly update the state at each clock.

• Problem: the noise accumulates over time.
• Solution: Computing on the fly the coefficients of the linear combination in clear

The noise variance in the output of the silent LFSR remains stable over
time, without using any PBS.
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Performances

Cipher Setup Latency Throughput Communication Costa 𝑝err
Trivium [BOS23] (128 thr.) 2259 ms 121 ms 529 bits/s 640 B + 35.6 MB † 2−40

Kreyvium [BOS23] (128 thr.) 2883 ms 150 ms 427 bits/s 1024 B + 35.6 MB † 2−40

Margrethe [HMS23]
No 27.2 ms 147.06 bits/s 64 MB * < 2−1000

No 54.2 ms 73.8 bits/s 128 MB * < 2−1000

PRF-based construction [DJL+24] No 5.675 ms 881 bits/s 32.8 MB = 8.9 MB + 23.9 MB 2−64

FRAST [CCH+24] 25 s (8 thr.) 6.2 s 20.66 bits/s 34.05 MB = 148 KB + 33.91 MB 2−80

Transistor No 251 ms 65.10 bits/s 13.54 MB = 780 B + 12.78 MB 2−128
a Includes size of encrypted symmetric key + size of evaluation keys. † Values recomputed from the data
of the papers. For consistency’s sake, we applied the classical technique of ciphertexts compression to
estimate the communication cost.
* In Margrethe, no keyswitching nor bootstrapping keys are required.
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Part 3

Conclusion



Conclusion

Studying plaintext spaces not power of two yielded speed-ups in different use-cases:
• Acceleration of boolean functions
• Acceleration of large LUT
• Improvement of transciphering performances

Perspectives
• More study of those “exotic” plaintext spaces
• Can we do this kind of things with packed schemes such as CKKS ?

PhD Defense 46/46



Bibliography I

Thibault Balenbois, Jean-Baptiste Orfila, and Nigel P. Smart.
Trivial transciphering with trivium and TFHE.
In Michael Brenner, Anamaria Costache, and Kurt Rohloff, editors, Proceedings of
the 11th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, Copenhagen, Denmark, 26 November 2023, pages 69–78. ACM, 2023.

Adda-Akram Bendoukha, Oana Stan, Renaud Sirdey, Nicolas Quero, and Luciano
Freitas.
Practical homomorphic evaluation of block-cipher-based hash functions with
applications.
Cryptology ePrint Archive, Report 2023/480, 2023.



Bibliography II

Mingyu Cho, Woohyuk Chung, Jincheol Ha, Jooyoung Lee, Eun-Gyeol Oh, and
Mincheol Son.
FRAST: TFHE-friendly cipher based on random S-boxes.
IACR Trans. Symm. Cryptol., 2024(3):1–43, 2024.

Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi.
Scale-invariant fully homomorphic encryption over the integers.
In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 311–328. Springer,
Berlin, Heidelberg, March 2014.

Amit Deo, Marc Joye, Benoit Libert, Benjamin R. Curtis, and Mayeul de Bellabre.
Fast homomorphic evaluation of LWR-based PRFs.
Cryptology ePrint Archive, Paper 2024/665, 2024.



Bibliography III

Craig Gentry.
Fully homomorphic encryption using ideal lattices.
In Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM Press,
May / June 2009.

Craig Gentry, Shai Halevi, and Nigel P. Smart.
Homomorphic evaluation of the AES circuit.
In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 850–867. Springer, Berlin, Heidelberg, August 2012.



Bibliography IV

Clément Hoffmann, Pierrick Méaux, and François-Xavier Standaert.
The patching landscape of elisabeth-4 and the mixed filter permutator paradigm.
In Anupam Chattopadhyay, Shivam Bhasin, Stjepan Picek, and Chester Rebeiro,
editors, INDOCRYPT 2023, Part I, volume 14459 of LNCS, pages 134–156. Springer,
Cham, December 2023.

Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud Sirdey.
A homomorphic AES evaluation in less than 30 seconds by means of TFHE.
In Michael Brenner, Anamaria Costache, and Kurt Rohloff, editors, Proceedings of
the 11th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, Copenhagen, Denmark, 26 November 2023, pages 79–90. ACM,
2023.


	State of the Art
	Fully Homomorphic Encryption
	TFHE: FHE over the Torus
	Bootstrapping and Negacyclicity

	Contributions
	Acceleration of Homomorphic Boolean Function
	Acceleration of large LUT Evaluation
	Transciphering with Transistor

	Conclusion

