Optimized Homomorphic Evaluation :

CRYPTOCXPERTS "
of Boolean Functions ool 4
Nicolas Bon, David Pointcheval, Matthieu Rivain ENS

CryptoExperts, Paris

Ecole Normale Supérieure-PSL, Paris
nicolas.bon@cryptoexperts.com

Graph of gadgets

Gadgets are better than gates

To evaluate Boolean Functions with TFHE, the natural gate bootstrapping Using prime values for p allows to homomorphically switch the encoding of
approach is inefficient. a bit with a simple multiplication by a clear constant. Thus, we can evaluate

a large Boolean circuit by segmenting it into smaller functions that can be
x1 x1 evaluated with a gadget.
x2 u X2 X1xX2 X3 x4 X5x6 X7 X8 X1X2 X3 X4 X5Xx6 X7 x8

\Y YV v
x3 g & | [a]l «] [
X4 X4

Gate approach: 3 Bootstrapping re- Gadget approach: 1 Bootstrapping @ @

quired. required. :
Our solution is to wrap Boolean Function into a gadget that is evaluated in @ n
one single bootstrapping, no matter the number of inputs. Gadget 3

New Encoding of bits into plaintexts

y y
A bit b € Z> is encoded by a part

of the discretized torus. Parts in red
encode the Boolean ZERO and parts
in green encode the Boolean ONE.

Segmentation of a large circuit An encoding switching operator al-
lows to plug gadgets into each other.

We have developed a heuristic algorithm to perform this segmentation for

Such a mapping is called a p- any graph. Especially, we apply it to the s-box of AES.

encoding. RED and GREEN should
never overlap.

Experimental results

We applied this framework to some cryptographic primitives with specially
tailored sets of parameters. Our results allow an improvement in perfor-
mance over the state of the art. Our experiences have been carried on a

Example of a 7-encoding.

Inner working of gadgets laptop.

. . . . Primitive Section or Other work Timing
With well-chosen p-encodings for the inputs, a simple sum followed by a Gate Bootstrapping 174 <
bootstrapping allows to extract the result of the function. Figure 4 is an One full run of SIMON [Ben+23] + 128 s

gifc=1 Our work 10s
example for the multiplexing function: f(a, b, c) = , Gate Bootstrapping 1498 s
bifc=0 One warm-up phase of Trivium (*) | [BOS23] (estimation on our machine) 53s
Our work 32.8s
Gate Bootstrapping 30.7 min

One Full Keccak permutation (x)

Our work 8.8 min
—_— Gate Bootstrapping 200s
One Ascon hashing (*) Our work 97
IGHS12] 1 18 min
One full evaluation of AES-128 [CLT14] t 5 min
(e = 2723) on one thread [Tra+23] 270 s
K 1
PBS Gategggr\s{’?r;pping 232 :
One full evaluation of AES-128 . .
a0 Our work (Real implementation) 135s
(e = 27*Y) on one thread
Our work

105 s

(Theoretical timing with two keys)

Table 1: Timings of evaluation of full primitives, and comparison with pre-
vious works when they exist. A star (x) is added in the cells if our timing
Is not obtained from a full implementation but estimated from an imple-

If the input encodings are well-chosen, red and green parts of the torus do mented building block. Also, the security level of each implementation is

not mix. Relabelling the intermediary torus is done using the truth table of A =128 and.thg default error probability i5.€ = 274 The concurrent works
f. that do not indicates their € are marked with *.

Generating the appropriate p-encodings for a given function f is done by
an efficient search algorithm we designed. It constructs a valid gadget for
a given value of p if such a gadget exists. Especially, functions with more
than six inputs are unlikely to have a valid associated gadget for a p small
enough to have good performances with the TFHE scheme.

Full paper and slides

To select the right value for p, we also developed a sieving heuristic.

