
OptimizedHomomorphicEvaluation
ofBooleanFunctions

Nicolas Bon, David Pointcheval, Matthieu Rivain
CryptoExperts, Paris

Ecole Normale Supérieure-PSL, Paris
nicolas.bon@cryptoexperts.com

Gadgets are better than gates
To evaluate Boolean Functions with TFHE, the natural gate bootstrapping
approach is inefficient.

Gate approach: 3 Bootstrapping re-
quired.

Gadget approach: 1 Bootstrapping
required.

Our solution is to wrap Boolean Function into a gadget that is evaluated in
one single bootstrapping, no matter the number of inputs.

New Encoding of bits into plaintexts
A bit 𝑏 ∈ Z2 is encoded by a part
of the discretized torus. Parts in red
encode the Boolean ZERO and parts
in green encode the Boolean ONE.

Such a mapping is called a 𝑝-
encoding. RED and GREEN should
never overlap.

Example of a 7-encoding.

Inner working of gadgets
With well-chosen 𝑝-encodings for the inputs, a simple sum followed by a
bootstrapping allows to extract the result of the function. Figure 4 is an

example for the multiplexing function: 𝑓 (𝑎, 𝑏, 𝑐) =
{
𝑎 if 𝑐 = 1
𝑏 if 𝑐 = 0

.

If the input encodings are well-chosen, red and green parts of the torus do
not mix. Relabelling the intermediary torus is done using the truth table of
𝑓 .

Generating the appropriate 𝑝-encodings for a given function 𝑓 is done by
an efficient search algorithm we designed. It constructs a valid gadget for
a given value of 𝑝 if such a gadget exists. Especially, functions with more
than six inputs are unlikely to have a valid associated gadget for a 𝑝 small
enough to have good performances with the TFHE scheme.

To select the right value for 𝑝, we also developed a sieving heuristic.

Graph of gadgets
Using prime values for 𝑝 allows to homomorphically switch the encoding of
a bit with a simple multiplication by a clear constant. Thus, we can evaluate
a large Boolean circuit by segmenting it into smaller functions that can be
evaluated with a gadget.

Segmentation of a large circuit An encoding switching operator al-
lows to plug gadgets into each other.

We have developed a heuristic algorithm to perform this segmentation for
any graph. Especially, we apply it to the s-box of AES.

Experimental results
We applied this framework to some cryptographic primitives with specially
tailored sets of parameters. Our results allow an improvement in perfor-
mance over the state of the art. Our experiences have been carried on a
laptop.

Primitive Section or Other work Timing

One full run of SIMON
Gate Bootstrapping 174 s

[Ben+23] † 128 s
Our work 10 s

One warm-up phase of Trivium (*)
Gate Bootstrapping 1498 s

[BOS23] (estimation on our machine) 53 s
Our work 32.8 s

One Full Keccak permutation (∗) Gate Bootstrapping 30.7 min
Our work 8.8 min

One Ascon hashing (∗) Gate Bootstrapping 200s
Our work 92 s

One full evaluation of AES-128
(𝜖 = 2−23) on one thread

[GHS12] † 18 min
[CLT14] † 5 min
[Tra+23] 270 s
Our work 103 s

One full evaluation of AES-128
(𝜖 = 2−40) on one thread

Gate Bootstrapping 234 s
Our work (Real implementation) 135 s

Our work
(Theoretical timing with two keys) 105 s

Table 1: Timings of evaluation of full primitives, and comparison with pre-
vious works when they exist. A star (∗) is added in the cells if our timing
is not obtained from a full implementation but estimated from an imple-
mented building block. Also, the security level of each implementation is
𝜆 = 128 and the default error probability is 𝜖 = 2−40. The concurrent works
that do not indicates their 𝜖 are marked with †.

Full paper and slides


