PSL

UNIVERSITE PARIS

THESE DE DOCTORAT

DE L'UNIVERSITE PSL

Préparée a I'Ecole Normale Supérieure de Paris

Development of Optimized Operations for Homomorphic
Cryptography

Soutenue par

Nicolas Bon
Le 14 Novembre 2025

Ecole doctorale n°386

Sciences Mathématiques de
Paris Centre

Spécialité
Informatique

s | PSL*

Composition du jury :

Caroline FONTAINE
Université Paris-Saclay

Pierre-Alain FOUQUE
Université Rennes 1

llaria CHILLOTTI
Desilo

Adeline ROUX-LANGLOIS

Normandie Université

Renaud SIRDEY
Commissariat a I'Energie Atomique

David POINTCHEVAL
Ecole Normale Supérieure

Sonia BELAID
CryptoExperts

Matthieu RIVAIN
CryptoExperts

Rapportrice

Rapporteur

Examinatrice

Examinatrice

Examinateur

Directeur de thése

Coencadrante de thése

Codirecteur de these

CXPERTS

I Résumé

Dans cette these, nous étudions le chiffrement homomorphe, une technique cryptographique qui
permet d’effectuer des calculs directement sur des données chiffrées, sans nécessiter de déchiffre-
ment préalable. Ce domaine a connu un essor spectaculaire au cours des quinze dernieres années,
avec ’émergence de nombreux schémas de chiffrement de plus en plus performants. Néanmoins,
les calculs homomorphes restent encore nettement plus cotiteux que leurs équivalents classiques,
ce qui freine leur adoption dans des applications concretes.

Nous nous concentrons dans ce travail sur I'un des schémas les plus prometteurs : TFHE.
Nous proposons de nouvelles techniques destinées a accélérer les calculs homomorphes pour
différents cas d’usage. En exploitant un encodage innovant des messages, nous commencons par
convevoir des algorithmes plus efficaces pour ’évaluation homomorphe de fonctions booléennes.

Dans un second temps, nous abordons le probleme du transchiffrement, une approche visant
a réduire la consommation de bande passante lors de la transmission de données chiffrées de
maniere homomorphe. Cela nécessite I’évaluation d’un algorithme de chiffrement symétrique
dans le domaine homomorphe. Pour cela, et toujours en nous appuyant sur notre technique
d’encodage, nous développons une implémentation homomorphe du chiffrement standard AES,
plus rapide que celles de 1’état de I'art, et contribuons a la conception d’un chiffrement par flot
spécifiquement optimisé pour le transchiffrement.

Nous poursuivons avec une contribution qui étend les capacités de TFHE, en lui permettant
de fonctionner sur des espaces de messages plus larges. Cette amélioration est possible grace a
un nouvel algorithme d’évaluation de table de correspondances dans ces espaces étendus.

Enfin, nous proposons une méthode conceptuellement simple et pratique pour générer des
jeux de parametres assurant sécurité, exactitude des calculs et efficacité, facilitant ainsi I'usage
de TFHE dans les applications concrétes.

Mots-Clés % Cryptographie, Chiffrement complétement homomorphe, Calcul sécurisé

ii

I Abstract

In this thesis, we study fully homomorphic encryption, a cryptographic technique that allows
computations to be performed directly on encrypted data, without requiring prior decryption.
This field has experienced remarkable growth over the past fifteen years, with the emergence
of increasingly efficient encryption schemes. Nevertheless, homomorphic computations remain
significantly more costly than their classical counterparts, which still hinders their adoption in
practical applications.

In this work, we focus on one of the most promising schemes: TFHE. We propose new
techniques aimed at accelerating homomorphic computations for various use cases. By leveraging
an innovative message encoding strategy, we begin by designing more efficient algorithms for
the homomorphic evaluation of Boolean functions.

Next, we address the problem of transciphering, an approach that seeks to reduce band-
width consumption during the transmission of homomorphically encrypted data. This requires
the evaluation of a symmetric encryption algorithm within the homomorphic domain. Still rely-
ing on our encoding technique, we develop a homomorphic implementation of the standard AES
encryption scheme that outperforms state-of-the-art implementations, and present our contri-
bution to the design of a stream cipher specifically optimized for transciphering.

We continue with a contribution that extends the capabilities of TFHE by enabling it to
operate over larger message spaces. This improvement is made possible by a new algorithm for
evaluating look-up tables in these extended spaces.

Finally, we propose a conceptually simple and practical method for generating parameter
sets that ensure security, correctness, and efficiency, thereby facilitating the use of TFHE in
real-world applications.

Keywords * Cryptography, Fully Homomorphic Encryption, Secure computation

iii

iv

I Acknowledgments

Je remercie particulierement Caroline Fontaine et Pierre-Alain Fouque pour avoir accepté de
rapporter ce manuscrit. Je remercie également Ilaria Chillotti, Adeline Roux-Langlois et Renaud
Sirdey pour leur participation au jury de cette these.

J’ai beaucoup entendu que l'ingrédient le plus important pour une these réussie est la qualité
de 'encadrement. Apres ces trois derniéres années, je peux confirmer que c¢’est absolument vrai.
J’adresse donc un grand merci a mes trois encadrants : Sonia Belaid, Matthieu Rivain et David
Pointcheval. Merci Sonia, pour m’avoir fait confiance et accompagné depuis le premier jour de
stage, quand je ne connaissais pas grand chose a la crypto, ni & la recherche. Merci pour tes
encouragements constants et ton attention au quotidien. Merci Matthieu, pour ton inébranlable
optimisme, ton inépuisable capacité a trouver des idées et tout simplement pour ta gentillesse.
Enfin, merci David pour m’avoir accueilli a 'ENS. J’ai pu constater que ta réputation d’efficacité
n’est pas usurpée, et je te remercie pour ta disponibilité pour mes questions malgré tout ce que
tu geres. Merci & tous les trois. C’était tres enrichissant et tres agréable de travailler avec vous.

J’ai eu la chance de trouver un excellent environnement a CryptoExperts. Je remercie donc
tous mes collegues anciens et actuels : Ryad Benadjila, Ghozlen Boukacem, Gaétan Cassiers,
Thibauld Feneuil, Louis Goubin, Viet-Sang Nguyen, Victor Normand, Pascal Paillier, Mélissa
Rossi, Abdul Rahman Taleb, Muaad Tamtam, Ronan Thoraval et Auguste Warmé-Janville.

Faire une these Cifre signifie avoir un deuxieme bureau. J’ai beaucoup apprécié faire partie
de "'open space" de 'ENS et de I’équipe qui y vit : donc merci a Léonard Assouline, Henry Bam-
bury, Hugo Beguinet, Céline Chevalier, Cédric Geissert, Wissam Ghantous, Lenaick Gouriou,
Paul Hermouet, Laurent Holin, Antoine Houssais, Guirec Lebrun, Jules Maire, Brice Minaud,
Ky Nguyen, Phong Nguyen, Paola de Perthuis, Eric Sageoli, Robert Schéidlich, Erkan Tairi,
Florian Tousnakhoff et Quoc-Huy Vu. Je remercie aussi Lise-Marie Bivard pour sa précieuse
aide dans les différents méandres administratifs qu’il a fallu traverser.

Je tiens aussi a remercier mes co-auteurs : ’équipe du CEA pour nos réflexions sur ’'AES: Ay-
men Boudguiga, Daphné Trama et Renaud Sirdey. Egalement, merci aux experts du symétrique
de 'INRIA et de Versailles pour notre collaboration sur Transistor : Jules Baudrin, Christina
Boura, Anne Canteaut, Gaétan Leurent, Léo Perrin et Yann Rotella.

Merci a Christina Boura et Louis Goubin pour m’avoir donné 'opportunité d’enseigner,
et aux étudiantes et aux étudiants de leur sympathie. Merci a Samuel Tap pour avoir pris
le temps de m’expliquer les arcanes de TFHE et du paramétrage. Merci a Pierrick Méaux
pour l'invitation & Luxembourg et pour les discussions sur le transchiffrement. Merci a Guirec
Lebrun pour m’avoir fait découvrir MLS (et pour sa solidarité dans les différentes galéres que
cela a impliqué). Merci & Ryad Benadjila pour avoir été un tres bon coach de C. Merci a ’équipe
de développement de tfhe-rs pour ce fantastique outil dont j’ai usé et abusé.

L’obsessivité qui vient avec ’activité de recherche peut tres vite dévorer les autres aspects
de la vie, mais j’ai toujours pu compter sur mes proches pour me sortir la téte du guidon. Je
remercie donc chaleureusement mes amis, des anciens du Nord-Isere aux Ensimagiens en passant
par mes colocataires successifs, et ma famille, en particulier mes parents et ma petite soeur. Je
termine avec une pensée pour Dalia, et la remercie pour tout ce qu’elle m’apporte en partageant
ma vie.

vi

I Contents

Résumé

Abstract
Acknowledgments

How to read this thesis 7
Notations

Acronyms

Introduction en Francais

1 Introduction to FHE
1.1 Motivation e e
1.2 The Breakthrough of Bootstrapping
1.3 Current Landscape of the FHE Schemes and Libraries
1.4 Security Properties

2 Presentation of the TFHE Scheme

2.1 Hardness Assumptions: LWE and GLWE Problems
2.2 Torus Equivalence and Discretization
2.3 Encryption and Decryptionin TFHE
2.4 Linear Homomorphisms
2.5 Keyswitching e
2.6 External Products e
2.7 Programmable Bootstrappingo

2.7.1 An Informal Overview of Blind Rotation

2.7.2 The Full Algorithm o
2.8 Performances of the PBS

3 The Negacyclicity Problem
3.1 Basics on Negacyclicity
3.2 The Classical Countermeasure: the Bit of Padding
3.3 Other Countermeasures Avoiding the Bit of Padding
3.4 Our Contribution: the Odd Plaintext Modulus
3.5 Conclusion L

4 Accelerating Homomorphic Boolean Functions
4.1 Preliminaries on Boolean Functions and Boolean Circuits
4.2 State of the Art on Homomorphic Boolean Computations

vii

iii

xi

xiii

XV

xvii

TR DO

— © 00 -1

15
16
17
19
20

23
23
24
25
26
29

4.3 Boolean Encoding over Z,, and Homomorphic Evaluation Strategy Between B and
Ly o
43.1 Encodingof BoverZ,
4.3.2 A New Strategy for Homomorphic Boolean Evaluation
4.3.3 Encoding Switching oo

4.4 Algorithms of Construction of Gadgets,
4.4.1 Reduction of the Search Space
4.4.2 Formalization of the Search Problem
4.43 Algorithm
4.4.4 Performances Measurements L Lo L.
4.4.5 An Efficient Sieving Heuristic to Find Suitable Encodings

4.5 Scaling our Approach to any Boolean Circuit
4.5.1 Graph of Subcircuits Lo
4.5.2 Heuristics to Find a Small Graph
4.5.3 Parallelization of the Execution of the Graph

4.6 Implementation Considerations: Adaptation of the Parameters Selection and of
the tfhe-rs Library
4.6.1 Crafting of Parameters 0oL
4.6.2 Concrete Implementations of p-Encodings and Homomorphic Functions in

tfhe-rs L e e

4.7 Application to Cryptographic Primitives
4.7.1 SIMON Block Cipher
4.7.2 The Trivium Stream Cipher
4.7.3 Keccak Permutation o oo
4.74 Ascon
4.7.5 AES . . e
4.7.6 Summary of Applications Lo

4.8 Conclusion e

Accelerating Homomorphic AES Evaluation
5.1 Imntroduction to Transciphering
5.2 Preliminaries on AES
5.3 Some Building Blocks for LUT-based Evaluation
5.3.1 AES Subroutinesas LUTs
5.3.2 LUTs Evaluation
5.4 Generalization of p-encodings to the Arithmetic Case
5.5 Design of Hippogryph o . e e
5.6 Experimental Results. o
5.6.1 State-Of-The-Art Homomorphic AES Executions
5.6.2 Results e

5.7 Conclusion e

Better Transciphering with Transistor

6.1 Constraints for a TFHE-friendly Stream Cipher

6.2 Description of Transistor e
6.2.1 Overall Structure
6.2.2 Detailed Description e
6.2.3 Controlling the Noise Evolution

6.3 A Brief Summary of the Security Analysis

6.4 Performances of Transciphering with Transistor
6.4.1 Key Wrapping and Bandwidth in TFHE Transciphering

viii

6.4.2 Transciphering vs. Data Representation
6.4.3 Detailed Homomorphic Implementations
6.4.4 TFHE Parameters e
6.4.5 Performances
6.4.6 Comparisons to the State of the Art
6.5 Conclusion L

7 Accelerating Large Look-Up Tables
7.1 Context and Formalisation of the Problem
7.2 Overview of the Method
7.2.1 Building Blocks
7.2.2 Core of the Method
7.3 Finding Efficient Decompositions o000
7.3.1 Construction of an Efficient Decomposition for the First Output
7.3.2 Generalization to Several Outputs
7.4 Experimental Results. o
7.5 Conclusion e

8 A Practical Solution for Parameter Selection
8.1 TFHE Parameter Selection Problem
8.1.1 TFHE Parameters
8.1.2 The Security Constraint oo
8.1.3 The Correctness Constraint
8.1.4 The Optimization Problem
8.2 Our Solution e
8.2.1 Reducing the Parameter Space
8.2.2 Modeling the Execution Time
8.2.3 The Optimization Process
8.3 Presentation of ORPHEUS
8.4 Experimental Results.
85 Conclusion e

Conclusion
Bibliography

A Supplementary Material on Parameter Selection
A.1 More Details on the CJP Atomic Pattern
A.2 Operations Counts and Complexities in CJP Atomic Pattern
A.3 Parameters for perr = 2128 . . L L

ix

95
95
96
96
98
99
101
106
109
111

113
114
115
117
117
119
119
120
123
124
125
128
129

131

133

I How to read this thesis ?

The thesis begins by a brief section written in French, that introduces the topic and provides a
summary of the contributions of this thesis.

Chapter 1 is an introduction presenting Fully Homomorphic Encryption (FHE), including
some historical background and a review of the state of the art. Then, Chapter 2 introduces the
TFHE cryptosystem in detail, presenting all its internal components and their functioning. In
particular, its bootstrapping operation, which lies at the heart of its homomorphic capabilities,
is described in depth.

In Chapter 3, we address one of TFHE’s fundamental issues: the negacyclicity problem.
This is one of the main hurdles when using TFHE in practice, as it limits the performance of
homomorphic operations and greatly complicates the design of homomorphic programs. We
provide a formal presentation of the problem as well as an overview of the existing solutions
found in the literature. We then introduce a new approach using a plaintext space of odd order,
which resolves the negacyclicity issue while also enabling new functionalities for TFHE. This
construction forms the foundation on which the rest of this thesis builds.

Chapter 4 presents a method to accelerate the evaluation of arbitrary Boolean functions in
TFHE. The core technique of TFHE’s original paper performs one bootstrapping per logic gate
in the function’s circuit. The problem is that this approach does not scale well when working
with more complex functions or more inputs. To overcome this, we developed a new type of
encoding, called p-encodings, which embed bits into a larger space. This allows multiple bits
to be compressed into the same ciphertext by summing them, enabling evaluation of the entire
function through a single bootstrapping. We develop algorithms to find suitable p-encodings for
a given function. If the circuit is still too large, we also present an algorithm to decompose it
into sub-blocks that can be processed using our method. To test this construction, we apply
it to several cryptographic primitives and demonstrate significant performance improvements
compared to the state of the art.

This work resulted in the publication:

Nicolas Bon, David Pointcheval, and Matthieu Rivain. “Optimized Homomorphic Evaluation
of Boolean Functions”. In: TACR Transactions on Cryptographic Hardware and Embedded
Systems 2024.3 (2024), pp. 302-341. DOL: 10.46586/tches.v2024.13.302-341

Chapter 5 aims to improve the homomorphic implementation of the AES standard from the
previous chapter. To do so, we exploit both Boolean and arithmetic representations and develop
a general framework for efficiently switching between the two. This requires generalizing the
encoding method from the previous chapter beyond the Boolean case to the arithmetic case, and
adapting advanced homomorphic operators from the literature to this encoding strategy. This
leads to the fastest AES implementation in the literature.

This work resulted in the publication:

Sonia Belaid, Nicolas Bon, Aymen Boudguiga, Renaud Sirdey, Daphné Trama, and Nicolas Ye.
“Further Improvements in AES Execution over TFHE”. in: TACR Commun. Cryptol. 2.1
(2025), p. 39. DOL: 10.62056/AHMP-4TW9. URL: https://doi.org/10.62056/ahmp-4tw9

xi

https://doi.org/10.46586/tches.v2024.i3.302-341
https://doi.org/10.62056/AHMP-4TW9
https://doi.org/10.62056/ahmp-4tw9

The main target use case of Chapter 5 is transciphering, a cryptographic technique that solves
the problem of ciphertext expansion. When data is encrypted homomorphically, it occupies much
more memory space and thus consumes more bandwidth when sent to a server. Transciphering
addresses this issue: instead, the client encrypts the data using a conventional symmetric cipher,
and the server homomorphically decrypts the data to bring it into the homomorphic domain.
Experimental results show that using a standard cipher like AES is not very efficient; instead,
one would prefer a cipher specifically designed to be efficiently evaluable under homomorphic
encryption. This is exactly what we construct in Chapter 6: we present our contribution to
the design of Transistor, a stream cipher that is highly efficient under TFHE. We provide its
specification and explain the rationale behind its design choices, including the use of an odd
modulus. Most of the chapter is dedicated to analyzing the strong performance of Transistor
in the homomorphic domain.

This work was published in:

Jules Baudrin, Sonia Belaid, Nicolas Bon, Christina Boura, Anne Canteaut, Gaétan Leurent,
Pascal Paillier, Léo Perrin, Matthieu Rivain, Yann Rotella, and Samuel Tap. “Transistor: a
TFHE-friendly Stream Cipher”. In: Advances in Cryptology - CRYPTO (2025). URL:
https://eprint.iacr.org/2025/282

The published version above includes significantly more content, including an in-depth se-
curity analysis of the scheme.

One of TFHE’s main limitations is that programmable bootstrapping becomes very slow as
the size of the message increases. As a result, evaluating Look-Up Tables (LUTSs) larger than 8
bits is impractical. In Chapter 7, we tackle this issue by extending TFHE’s bootstrapping capa-
bilities beyond 8 bits through a method that accelerates homomorphic evaluation of large LUTs.
Once again leveraging our encoding technique, we design a Look-Up Table (LUT) decomposition
algorithm that enables bootstrapping to be applied on smaller messages.

Finally, Chapter 8 goes beyond the scope of our encoding method in odd spaces and in-
troduces ORPHEUS, a tool designed to help homomorphic program designers choose parameter
sets that ensure the three central properties: security, correctness of computation, and efficiency.
The strength of ORPHEUS lies in its flexibility, allowing easy extension to new homomorphic
operators. Furthermore, its optimization algorithm estimates runtime using a cost model that
depends on the machine executing the program, allowing parameter sets to be tailored to various
usage contexts.

xii

https://eprint.iacr.org/2025/282

I Notations

Throughout this manuscript, we adopt the following conventions:

o Scalars are denoted by lowercase letters (e.g., a), and polynomials by uppercase letters
(e.g., A).

o Vectors are written in bold (e.g., a or A), and matrices in bold uppercase roman type

(e.g., A).
We use the following common symbols for standard mathematical sets:
e N for the set of natural numbers,
e 7 for the set of integers,
e R for the set of real numbers,
o B ={0,1} for the set of bits,
o T =R/Z for the torus, i.e., real numbers modulo 1.

The ring of integers modulo ¢, denoted classically by Z/qZ, is abbreviated as Z,. Similarly,
finite fields are denoted by I, with IF,, representing the finite field of prime order p.

Polynomial rings are written as, for example, Z,[X]. In particular, we frequently use cy-
clotomic polynomial rings of the form Z4[X]/(X®Y + 1), where N is a power of two. These are
abbreviated as Zg y[X].

We adopt the following mathematical operator notations:

o |z] denotes the rounding of a real value = to the nearest integer,
o [z], denotes the reduction of z modulo g,

e (x,y) denotes the inner product of vectors x and y.

Finally, for randomness and distributions, if D is a distribution, the notation x & D means
that z is sampled according to D. The same notation is used for uniform sampling from a set;

for example, x & Zq denotes that x is sampled uniformly at random from Zj.

xiii

Xiv

I Acronyms

AES

BSK

FFT
FHE

GGSW

GLWE

KSK

LFSR

LSB
LUT

LWE

MSB
MVB

NTT

PBS

Advanced Encryption Standard. i, iii, ix, x,
xix, 31, 39, 48, 56-62, 64, 65, 68-71, 73-77,
79, 82, 83, 94, 95, 97, 133

Bootstrapping Key. xvii, 4, 19-21, 93

Fast Fourier Transform. 5, 118

Fully Homomorphic Encryption. ix, xvi, xvii,
1, 3-7, 20, 49, 56, 61-65, 71, 73, 76, 79, 94,
101, 115-117, 121, 124, 133

Generalized GSW [GSW13|, see Definition
2.6.2 and 2.6.3. 11, 15, 16, 19, 20, 26, 94,
111

General Learning With Errors, see Definition
2.1.2. 7,8, 10, 11, 14-16, 19-21, 58, 66, 73,
118, 119, 121

Keyswitching Key. 12-14, 21, 93

Linear-Feedback Shift Register. 81-87, 89—
91, 95

Least Significant Bit. 32

Look-Up Table. x, xix, 23, 26, 32, 33, 60, 61,
65-68, 75, 95, 97, 98, 111, 113, 115, 133
Learning With Errors, see Definition 2.1.1. 2,
7-14, 17, 19-21, 33, 58, 68, 73, 106, 111, 118,
119, 121

Most Significant Bit. 24, 25, 33, 49
Multi-Value Bootstrapping. See Section
5.3.2. 6567, 69, 71

Number Theoretic Transform. 5

Programmable Bootstrapping, see Section
2.7.2. 7, 18, 20-24, 26, 32, 34, 36-39, 46, 51—
59, 65, 69-73, 80, 81, 84, 85, 88-94, 97-101,
103, 106, 108, 110, 111, 113-125, 135, 136,
138

XV

Acronyms

RLWE Ring Learning With Errors. 8

S-box Substitution Box. A substitution table in a
symmetric-key algorithm. 31, 46, 48, 55-61,
64-67, 73, 74, 81, 82, 86, 95, 97

TBM Tree-Based Method (or Tree-Based Boot-
strapping). See Section 5.3.2. 62, 65, 67, 69,
71, 74, 76

TFHE Fully Homomorphic Encryption over the

Torus. i, iii, ix, x, xvii-xix, 4, 5, 7-24, 27,
29, 31-34, 36, 39, 49, 53, 57, 58, 60-62, 64,
65, 68, 69, 71, 73, 74, 76, 77, 79-81, 84, 85,
87-91, 93-95, 97-100, 106, 115-121, 123-126,
133

WoP-PBS Without-Padding Programmable Bootstrap-

ping. See Section 3.3 and 7.4. 22, 26, 97,
111, 113, 114

xXvi

I Introduction en Francais

Mise en Contexte

Cryptographie. La cryptographie est un domaine technique a I'interface entre 'informatique
et les mathématiques appliquées. Elle étudie les méthodes permettant de protéger I'information.
Les techniques cryptographiques les plus classiques sont:

e Le chiffrement, qui transforme un message, un fichier ou plus généralement n’importe quel
type de donnée en la “brouillant”. Le seul moyen pour déchiffrer est de posséder la clé du
chiffrement. La donnée est donc illisible par les personnes non autorisées, . Cette technique
est notamment utilisée pour protéger la confidentialité des messages sur les applications
de messageries instantanées telles que WhatsApp ou Signal.

o L’authentification, qui permet de vérifier I'identité de ’émetteur d’un message. Par ex-
emple, elle assure qu’un utilisateur se connecte bien au serveur de sa banque et non a un
serveur frauduleux controlé par un pirate.

e Le contréle d’intégrité, qui permet de s’assurer qu'un message n’a pas été modifié ou
corrompu pendant sa transmission. C’est notamment utile pour s’assurer qu’un logiciel
téléchargé n’a pas été altéré afin d’y introduire une faille de sécurité.

A TDorigine exclusivement réservée au domaine militaire, la cryptographie a été transformée
en un enjeu de société majeur au XXle siecle. Une grande partie des échanges se fait désor-
mais en ligne, qu’il s’agisse de transactions bancaires, d’échanges commerciaux ou de simples
messages a ses proches. De fait, rendre les systemes de communications résistants face aux
attaques d’acteurs malveillants est devenu un enjeu stratégique central pour garantir la sécurité
et les libertés individuelles des citoyens. Des exemples de tels attaquants sont les cybercrim-
inels qui pratiquent I'usurpation d’identité pour monter des escroqueries, ou bien rangonnent
des entreprises ou des services publics en bloquant leur infrastructure ou en retenant leurs don-
nées. Il s’agit aussi de gouvernements autoritaires pratiquant la surveillance de masse sur leur
population, afin de neutraliser des opposants politiques ou opprimer des groupes minoritaires.

Les travaux fondateurs de Claude Shannon sur la théorie de 'information montrent qu’il ne
peut exister de chiffrement parfait. Autrement dit, un systéme cryptographique théoriguement
incassable serait inutilisable dans le monde réel. Ainsi, la pratique de la cryptographie consiste
a garantir un niveau de sécurité suffisant a un systeme, sans altérer sa fonctionnalité ni ses
performances.

Pour ce faire, les cryptographes cherchent a déterminer la puissance de calcul nécessaire a
un attaquant pour casser un systéme de sécurité, par exemple en déchiffrant un message secret
dont il n’a pas la clé. L’exemple le plus basique d’attaque est l'attaque par force brute (brute
force), qui consiste a essayer toutes les clés possibles jusqu’a trouver la bonne. Il convient
donc de choisir des clés suffisamment grandes pour que cette stratégie soit trop lente, ou trop
coliteuse a mettre en oeuvre. Evidemment, les attaques contre les systemes cryptographiques
se sophistiquent d’années en années, donc les techniques cryptographiques doivent évoluer pour
s’y adapter et toujours avoir un temps d’avance.

xvii

INTRODUCTION EN FRANCAIS

Calculer sur des données chiffrées. La cryptographie a connu un essor fulgurant au cours
des dernieres décennies. Notamment, le trafic Internet, qui était en clair jusqu’alors, a été
sécurisé par l'introduction du protocole HTTPS, qui permet de chiffrer et d’authentifier les
échanges entre le client et le serveur.

Cependant, il reste un cas d’usage ou la cryptographie demeure impuissante, et dans lequel les
données sont encore mal protégées: le calcul délégué. Cette (vague) dénomination englobe tout
les cas d’usages dans lesquels un utilisateur envoie une donnée a un serveur, non pas pour qu’il
en assure le transit a travers Internet, mais pour qu’il la traite et lui renvoie un résultat. On peut
penser par exemple aux applications telle que Google Maps, dans lesquelles 1'utilisateur envoie
sa position actuelle et sa destination au serveur, qui calcule alors un itinéraire qu’il renvoie sur le
téléphone de 'utilisateur. On peut également penser aux applications d’'Intelligences Artificielles
génératives dans lesquelles I'entrée de 1'utilisateur est traitée par un algorithme pour générer du
texte, de la musique ou des images. Enfin, cela concerne tous les cas ou des entreprises louent
des serveurs externes pour effectuer des calculs lourds ou héberger des services.

Le probleme est qu’effectuer des calculs sur des données chiffrées est un immense défi tech-
nologique, qu’on a longtemps pensé impossible. Par conséquent, le serveur doit nécessairement
déchiffrer les données pour pouvoir les traiter, ce qui rend ces dernieres vulnérable a la moindre
compromission du serveur par une attaque informatique.

Cryptographie Homomorphe. La cryptographie homomorphe (Fully Homomorphic En-
cryption en anglais, souvent abrégé en FHE) est la branche de la cryptographie qui s’attaque a
ce probléeme. Son but est de développer des algorithmes de chiffrement permettant a un serveur
d’effectuer des calculs directement sur les données chiffrées, sans nécessiter de déchiffrement
préalable. Il devient alors inutile pour un attaquant d’essayer de s’y introduire, car 'intégralité
des données de valeur qu’il contient sont chiffrées et donc inutilisables. De plus, le fournisseur
du service n’a lui-méme pas acceés aux données, ce qui assure une confidentialité totale vis-a-vis
de 'utilisateur.

Cette idée apparait dans un article de recherche pour la premiere fois en 1978, mais il
faut attendre 2009 pour que la premiere construction viable d’un algorithme de chiffrement
homomorphe apparaisse dans un article de recherche intitulé Fully Homomorphic Encryption
from Ideal Lattices par Craig Gentry [Gen09]. Ce travail a surtout une valeur théorique, car
I’algorithme de Gentry demande tellement de ressources pour étre calculé qu’il est impossible
de l'utiliser dans le monde réel.

Cet article a initié un veritable essor du domaine dans la communauté scientifique, et les
progres ont été extrémement rapides. Les algorithmes actuels commencent a étre utilisable en
pratique, et certains projets concrets d’aapplications homomorphes commencent a voir le jour.

Le challenge actuel est donc d’améliorer les performances du chiffrement homomorphe. Pour
cela, les cryptographes doivent s’attaquer a deux problématiques principales:

o La quantité de calcul nécessaire: Effectuer un calcul dans le domaine homomorphe (c’est-
a-dire directement sur les chiffrés) nécessite beaucoup plus d’opérations que lorsqu’on
I’effectue en clair. Par conséquent, une application fonctionnant homomorphiquement est
beaucoup plus lente et plus cofiteuse en énergie que si on l'exécute de fagon classique (de
3 & 5 ordres de grandeur en fonction de la nature des calculs).

e Le bruit: La sécurité des schémas de chiffrement homomorphes reposent sur la théorie des
réseaux euclidiens. Concrétement, cela signifie que lorsqu’on chiffre les données on leur
ajoute une petite perturbation aléatoire qu’on appelle le bruit. Comme ce bruit est tres
faible, il ne pose pas de probleme lors du déchiffrement car il est facile de se débarasser de
cette imprécision en arrondissant simplement les valeurs. Par contre, lorsqu’on effectue des
calculs homomorphes entre plusieurs valeurs chiffrées, leurs bruits s’additionnent ce qui
fait croitre I'imprécision. Par conséquent, le nombre d’opérations homomorphes qu’il est

xviii

INTRODUCTION EN FRANCAIS

possible d’effectuer est limité, car un bruit trop élevé deviendrait prépondérant par rapport
a l'information contenue dans les messages, rendant le déchiffrement impossible. On a
donc un “quota” de quantité de calculs disponible au terme duquel il faut nécessairement
s’arréter.

Bootstrapping. Dans son article fondateur de 2009, Craig Gentry introduit une notion fon-
datrice appelée bootstrapping', qui résout complétement le second probléeme. Il s’agit d’une
opération qui permet au serveur de réduire le bruit d’un chiffré de maniére homomorphe, sans
violer la confidentialité des données ! Donc si un schéma de chiffrement possede une opération
de bootstrapping (on dit qu’il est bootstrappable), cela signifie qu’il n’a pas de limitations sur la
quantité de calcul qu’il est possible de faire sur les données chiffrées. En effet, il suffit d’appliquer
un bootstrapping a chaque fois que la quantité de bruit dans les chiffrés devient trop grande, et
de continuer les calculs avec le chiffré bootstrappé !

Pour comprendre comment cela fonctionne, rappelez vous que lorsque 'utilisateur déchiffre
le résultat, il élimine le bruit avec une opération d’arrondi. Donc, s’il est possible de calculer
homomorphiquement la fonction de déchiffrement du schéma, alors il est possible de retirer le
bruit sans que le serveur aie besoin de déchiffrer !

Concretement, disons que le serveur possede un message chiffré c; qui correspond au message
clair (bruité) m + ej, chiffré avec la clé secréte s;. Ici m et e; représentent respectivement le
message clair et le bruit. Supposons que c; soit le résultat d’opérations homomorphes, donc le
bruit ey est élevé. Si nous voulons continuer a calculer, il faut réduire le bruit par un processus
de bootstrapping. Pour cela, le client doit fournir au serveur une clé de bootstrapping BSK.
Pour la créer, le client peut considérer la clé secréte s; comme un message et la chiffrer sous une
autre clé secrete s pour produire BSK = Encg,(s;), ou Enc désigne la fonction de chiffrement.

La propriété fondamentale découverte par Gentry est que si le serveur calcule homomor-
phiquement le déchiffrement de c; en utilisant la clé BSK, il obtient un chiffré co du méme
message sous la clé secrete so. Mais comme le déchiffrement élimine le bruit, e; disparait et le
message chiffré est & nouveau « frais » ! En réalité, tout le bruit n’est pas supprimé (ce qui ne
serait pas souhaitable, car toute la sécurité du chiffrement repose sur la présence de bruit dans
les chiffrés). Comme il y a du bruit dans BSK, le résultat co contient un nouveau bruit es. Mais
si I’algorithme est bien congu, il est possible d’avoir es < ej, ce qui permet de gagner de la
marge pour d’autres calculs.

Le bootstrapping n’est cependant pas une solution miracle. En effet, c’est une opération ex-
tréemement cotiteuse pour la totalité des schémas de chiffrement homomorphe. Donc en résolvant
le second probléme (celui du bruit qui limite la quantité de calcul), nous avons en fait aggravé
le premier (la lenteur du FHE) ! L’un des axes de recherches principaux dans la communauté
scientifique est donc de créer des schémas de chiffrement homomorphe avec un bootstrapping le
plus efficace possible.

Le schéma TFHE. L’un des schémas homomorphes les plus prometteurs se nomme TFHE
[Chi+20] (pour Fully Homomorphic Encryption over the Torus). Comme tous les autres sché-
mas, il permet d’effectuer des opérations linéaires, c’est-a-dire ’addition de deux chiffrés et la
multiplication d’un chiffré par une constante. Ces opérations linéaires sont quasiment gratuites
en terme de quantité de calcul, donc sont extrémement rapides. Par contre, elles augmentent
le bruit dans les chiffrés, et le serveur ne peut donc pas en effectuer un nombre illimité. Fort
heureusement, TFHE possede une opération de bootstrapping relativement efficace par rapport
aux standards du FHE, et donc les chiffrés peuvent étre régulierement rafraichi sans tuer les
performances. La particularité du bootstrapping de TFHE est qu’il est programmable. Cela sig-
nifie qu’en plus de réduire le niveau de bruit, le bootstrapping permet d’évaluer n’importe quelle

Lon dirait réamorcage en francais

xix

INTRODUCTION EN FRANCAIS

fonction sur le chiffré, sans aucun surcoiit ni en terme de calculs ni en terme de bruit ! Cette
fonctionnalité représente une avancée majeure dans le domaine, car cela permet de rentabiliser
le temps passé dans les opérations de bootstrapping.

Cependant, TFHE a deux défauts de taille par rapport aux autres schémas de 1’état de ’art.
D’abord, il ne permet de manipuler seulement des données de faible précision, de 'ordre de
quelques bits. Par conséquent, si on veut travailler avec des entiers, cela nécessite de découper
les valeurs en petites “tranches” de quelques bits et de manipuler ces sous-blocs. Cela rend la
conception de programmes homomorphes bien plus complexe que dans le domaine des clairs.
C’est la raison pour laquelle le développement de systémes de compilation automatique de
programmes homomorphes est devenu un domaine de recherche actif ces dernieres années.

Le second probleme est que TFHE n’est pas intrinsequement parallélisable, contrairement
a d’autres chiffrements prometteurs de I’état de lart tels que CKKS [Che+17] qui permettent
d’encoder plusieurs valeurs dans un méme chiffré et d’effectuer des calculs en parallele sur chacun
d’eux. Si ces schémas montrent des meilleurs timings amortis, leur latence est beaucoup plus
grande.

Malgré ces faiblesses, TFHE reste tres étudié dans la littérature scientifique et constitue
I’un des principaux espoirs pour 'adoption massive du chiffrement homomorphe. Pendant cette
these, nous nous sommes concentrés sur ce schéma et avons développé des algorithmes permet-
tant d’accélérer les calculs homomorphes dans certains cas d’usages. Nous présentons un résumé
de nos travaux dans la prochaine section.

Résumé de la thése et des contributions scientifiques

La thése commence par une introduction (chapitre 1) présentant le chiffrement totalement
homomorphe, incluant quelques considérations historiques et présentant un état de l'art de
I’écosysteme. Puis, le chapitre 2 introduit en détail le cryptosystéme TFHE, en présentant
tous ses composants internes ainsi que leur fonctionnement. En particulier, son opération de
bootstrapping, qui constitue le coeur de ses capacités homomorphes, est présenté en détail.

Dans le chapitre 3, nous présentons 1'une des problématiques fondamentales de TFHE: le
probléme de négacyclicité. 1l s’agit de 'un des principaux écueils lors de 1'utilisation de TFHE
en pratique, car il limite les performances des opérations homomorphes de TFHE et complex-
ifie énormément la conception de programmes homomorphes. Nous donnons une présentation
formelle du probléme ainsi qu'un apercu de I’état de ’art des solutions existantes dans la lit-
térature pour le résoudre. Puis, nous introduisons une nouvelle méthode consistant a utiliser un
espace de plaintext d’ordre impair, ce qui résout ce probleme de négacyclicité tout en activant de
nouvelles fonctionnalités pour TFHE. Cette construction constitue la base sur laquelle reposent
les contributions du reste de cette theése.

Le chapitre 4 présente une méthode pour accélérer 1’évaluation de fonctions booléennes arbi-
traires en TFHE. La technique de base de I'article fondateur de TFHE est d’effectuer un boot-
strapping par porte logique dans le circuit de la fonction. Le probléme est que cette stratégie
passe tres mal & 1’échelle quand on veut travailler avec des fonctions plus complexes ou avec plus
d’entrées. Pour résoudre ce probleme, nous avons développé un nouveau type d’encodage, appelé
p-encodages, qui plongent les bits dans un espace plus grand. Grace a cela, il devient possible
de compresser plusieurs bits dans le méme chiffré en les sommant, puis d’évaluer 'intégralité de
la fonction en ne calculant qu’un seul bootstrapping. Nous développons des algorithmes perme-
ttant de trouver les p-encodages adaptés a une fonction donnée. Dans le cas ou le circuit serait
tout de méme trop grand, nous présentons également un algorithme pour découper le circuit
en sous-blocs évaluables avec notre méthode. Pour tester notre construction, nous I’appliquons
a quelques primitives cryptographiques pour les implémenter en homomorphe, et démontrons
un gain de performance significatif par rapport a 1’état de l'art. Ce travail a donné lieu a la
publication:

INTRODUCTION EN FRANCAIS

Nicolas Bon, David Pointcheval, and Matthieu Rivain. “Optimized Homomorphic Evaluation
of Boolean Functions”. In: TACR Transactions on Cryptographic Hardware and Embedded
Systems 2024.3 (2024), pp. 302-341. DOI: 10.46586/tches.v2024.13.302-341

Le chapitre 5 vie & améliorer I'implémentation homomorphe du standard AES du chapitre
précédent. Pour ce faire, nous exploitons & la fois les représentations booléennes et arithmétiques
et développons un cadre générique pour passer efficacement de 'une a l'autre. Cela nécessite
de généraliser la méthode d’encodage du chapitre précédent au-dela du cas booléen vers le
cas arithmétique, ainsi que d’adapter des opérateurs homomorphes avancés de ’état de 'art a
cette logique d’encodage. Nous produisons ainsi I'implémentation d’AES la plus rapide de la
littérature. Ce travail a donné lieu a la publication:

Sonia Belaid, Nicolas Bon, Aymen Boudguiga, Renaud Sirdey, Daphné Trama, and Nicolas Ye.
“Further Improvements in AES Execution over TFHE”. in: TACR Commun. Cryptol. 2.1
(2025), p. 39. DOI: 10.62056/AHMP-4TW9. URL: https://doi.org/10.62056/ahmp-4tw9

Le principal cas d’usage visé par le chapitre 5 est le transchiffrement, une technique cryp-
tographique permettant de résoudre le probleme d’expansion de chiffré. Concrétement, lorsque
des données sont chiffrées homomorphiquement, elles prennent beaucoup plus d’espace en mé-
moire, et donc consomment plus de bande passante quand elles sont envoyées au serveur. Le
transchiffrement résout ce probléme: le client va plutot envoyer les données chiffrées avec un
algorithme de chiffrement symétrique classique, et le serveur va déchiffrer homomorphiquement
ces données pour les récupérer dans le domaine homomorphe. Les résultats expérimentaux
montrent qu’utiliser un chiffrement standard tel que ’AES n’est pas tres efficace, une meilleure
option serait d’utiliser un algorithme de chiffrement spécialement conc¢u pour s’évaluer rapide-
ment dans le domaine homomorphe. C’est ce que nous construisons dans le chapitre 6: nous y
présentons notre constribution a la conception de Transistor, un chiffrement a flot s’évaluant
tres efficacement avec TFHE. Nous en donnons la spécification et expliquons le raisonnement
motivant ses choix de conception, notamment I'utilisation du modulo impair. La majeure partie
de ce chapitre est consacrée a ’analyse des bonnes performances de Transistor dans le domaine
homomorphe. Ce travail a donné lieu a la publication:

Jules Baudrin, Sonia Belaid, Nicolas Bon, Christina Boura, Anne Canteaut, Gaétan Leurent,
Pascal Paillier, Léo Perrin, Matthieu Rivain, Yann Rotella, and Samuel Tap. “Transistor: a
TFHE-friendly Stream Cipher”. In: Advances in Cryptology - CRYPTO (2025). URL:
https://eprint.iacr.org/2025/282

La version publiée ci-dessus a beaucoup plus de contenu, notamment une analyse approfondie
de la sécurité du schéma.

L’une des limitations principales de TFHE est que 'opération de bootstrapping programmable
devient tres lente a mesure qu’on traite des messages de plus en plus grands. Ainsi, évaluer des ta-
bles de correspondances (Look-Up Tables) de taille supérieure a 8 bits est impossible en pratique.
Dans le chapitre 7, nous nous attaquons a ce probléme et étendons les capacités du bootstrap-
ping de TFHE au-dela de 8 bits grace a une méthode accélérant 1’évaluation homomorphe de
ces grandes Look-Up Tables. En nous appuyant a nouveau sur notre technique d’encodage, nous
avons concu un algorithme de décomposition des LUT permettant d’utiliser le bootstrapping
sur des plus petits messages.

Enfin, le chapitre 8 va au-dela du cadre de notre méthode d’encodage dans des espaces impairs
et introduit ORPHEUS, un outil destiné & aider les concepteurs de programmes homomorphes &
dimensionner des jeux de parameétres garantissant les trois propriétés centrales : la sécurité, la
correction des calculs et Uefficacité. La force de ORPHEUS réside dans sa flexibilité permettant
de 'étendre facilement a des nouveaux opérateurs homomorphes. De plus, son algorithme

xxi

https://doi.org/10.46586/tches.v2024.i3.302-341
https://doi.org/10.62056/AHMP-4TW9
https://doi.org/10.62056/ahmp-4tw9
https://eprint.iacr.org/2025/282

INTRODUCTION EN FRANCAIS

d’optimisation estime le temps de calcul grace a un modele de colit dépendant de la machine sur
laquelle le programme tourne, permettant d’adapter les jeux de parametres a différents contextes
d’utilisation.

xxii

Chapter

|
I Introduction to Fully
Homomorphic Encryption

1.1 Motivation

Cryptography has experienced a tremendous boom over the past decades. In particular, Internet
traffic, which used to be transmitted in plaintext, was secured by the introduction of the HTTPS
protocol, which encrypts and authenticates communications between client and server.

However, one use case remains where cryptography is still ineffective, and where data is still
poorly protected: delegated computation. This (vague) term encompasses all scenarios where a
user sends data to a server not merely to transmit it across the Internet, but to have it processed
and to receive a result in return. One can think, for example, of applications like Google Maps,
where the user sends their current location and destination to a server, which then computes a
route and sends it back to the user’s phone. Another example is the new generative Artificial
Intelligence applications, where the user’s input is processed by an algorithm to generate text,
music, or images. Finally, this also applies to cases where companies rent external servers to
perform heavy computations or to host services.

The problem is that performing computations on encrypted data is a massive technological
challenge, long thought to be impossible. As a result, the server must necessarily decrypt the
data before processing it, which leaves the data vulnerable to any potential compromise of the
server by a cyberattack.

Homomorphic encryption (Fully Homomorphic Encryption, or FHE) is the branch of cryp-
tography that tackles this issue. Its goal is to develop encryption algorithms that allow a server
to perform computations directly on encrypted data, without the need to decrypt it first. This
way, an attacker has no incentive to breach the server, as all valuable data it contains remains
encrypted and therefore useless. Additionally, the service provider itself does not have access to
the data, ensuring full confidentiality for the user.

Figure 1.1 demonstrates a procedure of private outsourcing of computation using homomor-
phic encryption. We consider a use-case where a client owns some sensitive data, while a server
provides some Al-based service (represented by a neural network).

1. The client generates a secret key and an evaluation key. The former allows them to encrypt
and decrypt their data, while the latter allows only to perform homomorphic computations
on encrypted data, but not to acquire any information on what is actually encrypted.

2. Using the secret key, the client encrypts its sensitive data.

3. The client uploads the encrypted data on the server, as well as the evaluation key. Note
that this evaluation key could have been sent beforehand during some user enrollment
procedure.

4. The server runs a homomorphized version of its neural network. Using the evaluation
key, it can run the computation directly on the encrypted data to get the result the client

CHAPTER 1. INTRODUCTION TO FHE

wished. Because of the encryption layer, the server cannot gain any information on neither
the input data nor the result of the computation.

5. The server then sends back the encrypted result to the client.

6. Using the secret key, the client can decrypt the result.

Historical Background. The initial appearance of the notion of homomorphic encryption in
the scientific literature can be traced back to 1978, in a paper by Rivest, Adleman and Dertouzos
[RAD78]. They theorize the existence of privacy homomorphism, which are encryption functions
which permit encrypted data to be operated on without preliminary decryption.

Over the following decades, research focused primarily on the development of partially homo-
morphic schemes, which support only a single homomorphic operation, typically either addition
or multiplication. Additive homomorphisms were particularly favored in applications like elec-
tronic voting. One of the most well-known examples is the Paillier cryptosystem [Pai99].

In parallel, a different class of schemes emerged: leveled (or somewhat) homomorphic encryp-
tion schemes. These allow for both addition and multiplication, but only a limited number of
operations can be performed sequentially. Notable examples include the DGHV scheme [Dij+10)]
and the original BGV scheme [BGV14]!.

Interestingly, the bounded depth of computation in these schemes arises from distinct causes.
In DGHV, the size of the integers in the ciphertexts grows with each operation, eventually
becoming computationally prohibitive. In BGV (like in the others lattice-based schemes), a
random error called noise is introduced during encryption, and this noise increases until it
overwhelms the signal, rendering the ciphertext undecipherable. In both cases, a critical resource
(either magnitude or noise) accumulates irreversibly, ultimately preventing further computation.

This bound was suddenly removed in 2009 in a groundbreaking construction by Gentry, wich
opened the door to a very fast development of the field in the following years. We present this
transformative result in the next section.

1.2 The Breakthrough of Bootstrapping

In 2009, Craig Gentry publishes the breakthrough paper Fully Homomorphic Encryption using
Ideal Lattices [Gen09]. In this work, he introduces the first ever fully homomorphic encryption
scheme. Its main idea is the bootstrappability of a scheme.

Bootstrappability is the ability of a scheme to evaluate homomorphically its own decryption
circuit. Gentry shows that if a scheme achieves bootstrappability, then it achieves fully homo-
morphic encryption. Building on this theoretical result, he constructs a lattice-based bootstrap-
pable scheme and demonstrates the first ever example of fully homomorphic encryption scheme.
Since this foundational work, lattice-based constructions have remained the only serious candi-
dates for fully homomorphic encryption.

Such homomorphic schemes work by injecting some small random noise in the plaintext data
before encryption. Its role is to ensure security, relying on computational hardness assumptions
such as Learning With Errors (LWE) (we explain it further in Section 2.1). Because the noise is
small, it can be easily removed during decryption by a simple rounding operation.

Gentry’s original scheme offered homomorphic additions and multiplications. However, be-
cause the plaintext messages are noisy, these operations increase the noise in the ciphertexts.
So, if too many operations are performed, the noise gets so large that it becomes preponderant
and blows the meaningful information contained in the ciphertexts.

! Although these schemes were actually shown to be bootstrappable (see Section 1.2), the bootstrapping process
was too inefficient to be practical.

CHAPTER 1. INTRODUCTION TO FHE

Client Server
[] ED
IE==2)
1. \KeyGenFHE
/
0110 Encrne 0110
2. 1001 — ﬁ —{1001
1010 101
0110
3 1001
101 Be

el =]
R
/

e~
-
oo~
O

il

6. D\U/E{% ZgHE »G\[ﬁﬂ

Figure 1.1: An illustration of a protocol of outsourced computation using FHE. Hatching denotes that the
homomorphized version is Tun.

CHAPTER 1. INTRODUCTION TO FHE

[
0110 “T= 0110
T

Figure 1.2: High-level overview of the bootstrapping principle. Hatching denotes the fact that the operation
s ran homomorphically. The gauges denotes indicative noise levels for the ciphertexts.

This is where bootstrappability comes in. It gives access to an operation (the bootstrapping)
that decrypts homomorphically the noisy ciphertexts. But how can this help to achieve FHE 7

Imagine the server has a ciphertext ¢; encrypting the (noisy) message m + e; under the
secret key s1, where m is the plain message and e; denotes the noise. Let us say that c; is the
output of a circuit of homomorphic operations, so the noise e; is rather large. If we want to
keep computing without losing information, we need to reduce the noise by a bootstrapping.

To do so, the client needs to give to the server a bootstrapping key BSK. In order to create
it, the client can treat the secret key s; as a message and encrypt it under another secret key
s2 to produce BSK = Encg,(s1). Now, if the server computes homomorphically the decryption
of ¢ using BSK, it retrieves an encryption co of the same message under the secret key so. But
because, decryption removes noise, e; disappears and the ciphertext is fresh again!

Actually, all the noise does not get removed (this would not be desirable, because all the
security of the encryption relies on the presence of noise in the ciphertexts). As there is some
noise in BSK, the result co carries some noise ey. But if things are well dimensioned, it is
possible to get es < e and so retrieve some room for further computations. We illustrate the
bootstrapping principle in Figure 1.2.

Gentry’s original scheme was merely theoretical, because the homomorphic operations, and
in particular the bootstrapping, were extremely slow. But since then, significant improvements
have been achieved in FHE efficiency. Modern schemes are on the verge of being usable in
practice for some use-cases. In the next section, we give a tour of the modern schemes and
libraries that makes the FHE landcape as of today.

1.3 Current Landscape of the FHE Schemes and Libraries

After a decade of research, homomorphic schemes have evolved to stabilize around two main
paradigms. We present both by their main representatives: TFHE [Chi+20] and CKKS [Che+17].
They have quite different (and complementary) philosophies of computing, and lead to radically
different design choices when used:

CHAPTER 1. INTRODUCTION TO FHE

2

TFHE: This scheme relies on a very low-latency bootstrapping operation®. It manipulates

small limbs of data of a few bits, and operates exact computations on them.

CKKS: CKKS has quite opposite features of TFHE. It relies on a approximate paradigm
for the computations, so is quite appropriate for floating-point computations. Moreover, it
supports SIMD (Same Instruction Multiple Data) within its ciphertexts, so it allows for heavy
parallelization. While its bootstrapping is quite heavy and appeared later in the literature
[Che+18], a lot of advancements happened in the last few years making it closer to practical
[CCS19; HK20; Kim+22].

We should also mention BFV/BGV [Bral2; BGV14; FV12], that share most of the properties
of CKKS. However these constructions do not work with approximate floating-point computa-
tion, but rather with exact computations over large integer rings.

Libraries. Several libraries implement these schemes, facilitating their adoption. For TFHE,
we can mention tthe-rs [Zam22c] and TFHEpp [Mat20]. For CKKS, we can mention HEAAN
[Inc20] and Lattigo [24]. Finally, OpenFHE [Bad+22] is an attempt at constructing a universal
library that supports all the schemes and allows conversions.

These libraries target users familiar with FHE, and offer quite low-level API. One of the issue
slowing down the massive adoption of FHE is the difficulty of developing concrete applications
from the cryptographic primitives. A layer of compilation is thus required from “plaintext”
programming to homomorphic code. Such projects of homomorphic compiler include Concrete
[Zam22b] and HEIR [Con23].

Another active line of research is hardware acceleration. Quite promising theoretical results
have been achieved [Gee+23; Ber+23b; Cou+23; Kri+24] and the first “FHE-tailored” chips
have started to be produced. Such hardware include NTT/FFT-dedicated accelerators, as these
operations account for the largest part of the computations.

Some standardization projects are arising [Alb+18; ST25], which would be an important
step for the adoption of FHE in practice.

1.4 Security Properties

In cryptography, the security of a scheme is modeled by a security game. In an idealized world, a
challenger running the scheme is opposed to a polynomial-time attacker. This attacker has access
to oracles that they can query. For encryption scheme, one of these games is the indisguishability
game: the attacker picks two messages and sends them to the challenger. The challenger flips
a coin and encrypts one of the messages at random. They send this ciphertext (named the
challenge ciphertext) to the attacker, who has to guess which message has been encrypted. If
the attacker can do better that random guessing (so guess right with probability larger than
0.5), we say that they have a non-negligible advantage, indicating a vulnerability against the
type of attack.

Usually, the “Holy Grail” for encryption schemes is CCA2 security (or adaptative chosen-
ciphertext security). In the corresponding game, the attacker has access to an encryption and
a decryption oracle, that they can query both before and after having received the challenge
ciphertext, with the exception that they are forbid to query the decryption oracle directly on
the challenge ciphertext.

By design, homomorphic schemes cannot achieve such security property because they are
intrinsically malleable. So a trivial attack would be to homomorphically add an encryption of
zero to the challenge ciphertext and query the decryption oracle on the result. The oracle would
accept the decryption and output the message, completely breaking the security of the scheme.

2by FHE standards

CHAPTER 1. INTRODUCTION TO FHE

Actually, things are even worse: if the scheme is bootstrappable, then even CCAL security
is unachievable. This corresponds to a non-adaptative chosen-ciphertext security, the difference
with CCA2 being that the attacker is no longer allowed to query the decryption oracle after having
seen the challenge ciphertext (so it modelizes a weaker security property). To understand the
attack, recall that in Gentry’s blueprint, the bootstrapping key is an encryption of the secret
key. So, by querying the decryption oracle with the bootstrapping key, the attacker may recover
the secret key and decrypt any ciphertext sent by the challenger. Some attacks are even possible
with more constrained decryption oracles: for example [Lof+12] demonstrates attacks with only
an access to an oracle that tells if a ciphertext is valid or not, which seems a very practical
concern.

Because these advanced security properties are so hard to achieve, the de facto standard for
FHE schemes has become CPA security (where the attacker has only access to an encryption
oracle and no decryption oracle). This is the level of security targeted by most applied libraries.
However, such security level is not sufficient in practice for most of the use-cases of FHE.

The problem has first been revealed in the work of [LM21] for approximate homomorphic
schemes. In their work, they leverage the fact that the decryption function leaks the noise in
ciphertexts to mount a secret-key recovery attack. They named this framework CPAP (-P denot-
ing the use of the output of the Decryption algorithm). To be protected against such attacks,
users should be prohibited to disclose the results of decrypted messages. But in some use-cases
(such as Multi-Party Computations), it is necessary to share the decrypted message with other
users. So the outputs of the decryption algorithm should be protected by injecting random
noise to flood the leaked information [CHK20]. Actually, further works [Che+24a; Che+24b]
have shown that non-approximate schemes are also vulnerable to CPAP attacks: instead of ex-
ploiting the noise leakage, the attacker can actively tamper with the noise in ciphertexts to
trigger decryption errors and harvest information to mount a key-recovery attack.

What these attacks show is that FHE by itself is not sufficient to build secure applications in
the real world. To prevent against tampering of ciphertexts, CPA-secure FHE schemes need to
be augmented with some machinery to prove the well-formedness of ciphertexts. Some literature
on the topic has been developed in the recent years, notably the works of [MN24; Brz+25]. They
develop the new security notion of vCCA (for verified chosen ciphertezt security) and implement
it in practice with SNARKS [Bit+12] (succing non-interactive argument of knowledge).

Chapter

2
I Presentation of the TFHE
Scheme

The previous chapter presented insights on Fully Homomorphic Encryption in general, but this
thesis will exclusively cover the TFHE scheme.

Introduced in [Chi416; Chi+17] as an evolution of the FHEW scheme [DM15], TFHE quickly
gained traction to become one of the most promising scheme to attain performances good enough
to be used in real-world scenarios. It has been enriched with more features later: and more
complete versions of this work have been published in [Chil8; Chi+20].

At the core of TFHE lies a powerful Programmable Bootstrapping operation (Programmable
Bootstrapping, see Section 2.7.2 (PBS)). As we presented in Section 1.2, it allows to manage
the noise in the ciphertexts during the computation, allowing to achieve Fully Homomorphic
Encryption. In TFHE, this bootstrapping operation goes a step further: it enables the evaluation
of arbitrary functions directly on the refreshed ciphertexts, with no computational or noise
overhead.

In this chapter we provide an in-depth presentation of the TFHE scheme. We introduce
the hardness assumptions it relies on, its encryption procedure as well as its homomorphic
capabilities. We conclude with insights into its practical performance.

2.1 Hardness Assumptions: LWE and GLWE Problems

Original LWE problem. In 2005, Regev laid the foundations for an important part of modern
lattice-based cryptography by defining the Learning With Errors (LWE) problem in [Reg05]. The
version usually used in FHE literature is presented in Definition 2.1.1:

Definition 2.1.1. (Learning With Errors). Let ¢ and n two integers, respectively called modulus
and dimension. Let xs and x. be distributions over small values of Z,. We consider a secret

vector, sampled as: s = (Sg,...,Sp—1) & X%7. The LWE distribution Db}/r\{is,xe (s) is defined as:

DU . = { (@)

The decisional version of the problem is to distinguish this distribution from a uniformly
random one, namely:

a:(a()’"'?a/’n—l)ﬁu(Zq)nae£X€7b:<aus>+e}

D(random) _ {(a’ T‘)

aﬁmzq)”,riwzq)}

The search version of the problem is to recover s from samples of D'q-v,\{'; (s).
M X s Xe

Regev proved that the search and decisional problems are reducible to each other and their
average case is as hard as worst-case lattice problems.

The hardness of this problem depends on the parameters g, n, xs and x., and so does the
security of the schemes built upon it. Common practice in the field is to derive an approximate
concrete security level A for a given parameter set with a tool named lattice-estimator

7

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

[APS15]. Users can input concrete values and distributions for the parameters, and the tool
evaluates the security of the underlying LWE instance by running simulations of attacks of the
literature.

In Definition 2.1.1, we did not specify the shapes of the distributions xs and y. (beyond the
fact they yields small values). Several distributions are possible: a discrete Gaussian with a small
variance, a uniform distribution restricted on a small interval, or a binomial. Some versions with
sparse secrets also exist. The choice of the right distribution depends of the considered use-case,
each possibility offering a different trade-off in terms of security and efficiency [Buc+16; CP19;
Bha+19; Sha+24].

Most implementations of TFHE select a uniform distribution on {0, 1} for the secret, and a
Gaussian with a small variance O'EWE for the noise. We will use these distributions in this thesis,
and will use the notation LWE, ,, ») for these instances.

Extension to the Polynomials. Looking for more efficient solutions, the LWE problem has
been extended in a ring variant named RLWE in [LPR10; Ste4+09]. A generalized version over
rings named GLWE, first formalized in [BGV11] and used by TFHE, is presented below. It is
very similar to the LWE one, but deals with polynomial values instead of integers:

Definition 2.1.2. (Generalized Learning with Errors) Let ¢ and k two integers, and N a power
of two, respectively called modulus, dimension and degree. We consider the polynomial ring
Zq[X]/(XN + 1), that we denote in short Zy 4[X]. Let ys and xg be distributions over the
small values of Zy 4[X], (that is to say, polynomials with small coefficients). We consider a

secret vector S, sampled as S = (Sp, ..., Sk_1) & x%. The GLWE distribution DSE%X&XE(S) is
defined as:

$ $
DY e (8) = { (A B)| A= (Ao Ai)) E U@y X)* B & xe B = (AS) + B}

The decisional version of the problem is to distinguish this distribution from a uniformly
random one, namely:

plrandom) _ {(A’R) ‘ A (E U (ZNﬂ[X])k,R (i U (ZN,q[X])}

: : GLWE
The search version of the problem is to recover S from samples of D"\, - (S).

Note that if we fix k = 1, we fall back on the classical RLWE problem, notably used in BGV
[BGV14]. Also, taking N = 1 produces an LWE instance with n = k.

Concretely, using polynomial rings allows to encode more information in a single sample,
yielding more compact ciphertexts and public keys. The schemes can also benefit from high-
speed polynomial arithmetic techniques such as Fast Fourier Transforms (FFT).

The general consensus is that the hardness of GLWE(, ;.) is similar to the hardness of
LWE ¢,x-N,0), Which makes it possible to use the lattice-estimator as well.

2.2 Torus Equivalence and Discretization

The T in TFHE stands for Torus, because in the seminal paper of TFHE [Chi+20], the authors
worked with torus-based variants of LWE and GLWE.

The torus T = R/Z corresponds to the reals modulo 1. Algebraically, this space does not
have a ring structure, but actually is a Z-module one, which means that:

e The sum of two torus elements is well-defined, and yields another torus element.

8

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

e The multiplication between an element of T and an element of Z is also well-defined, and
produces an element of T.

e On the other hand, multiplying two elements of T does not make sense. To be convinced
of it, we can remark that, for any non-zero torus element z, 0 x x = 0 while 1 x x = =.
But since 0 and 1 are equivalent over the torus, these results should not be different.

Recall the LWE assumption (Definition 2.1.1). If we rescale the elements of Z, by dividing
them by ¢, we get elements of the discretized torus. We can then redefine seamlessly the LWE
problem over the torus. Extensive details about this transformation can be found in [Chil8].

This brings two advantages:

e LWE over the torus is scale-invariant, which makes the analysis of the security and of the
noise much simpler.

e The Z-module structure propagates in the ring versions, as well as in matrices spaces.
Thus, it allows for very powerful generalizations of homomorphic schemes on a wide variety
of spaces, like in [Bou+20; Bel+24].

When implementing the scheme in practice, torus elements are represented by integers in
machine. The torus is thus seen as discretized, which we denote by

a
']I‘:{ aEZ}
q p q

with ¢ = 2 (Q denotes the number of bits of precision of the type, so 32 or 64 bits in most
implementations). The properties of the torus structure are preserved.

This thesis is mainly about practical instantiations of the scheme. So, for the sake of clarity
we will adopt a notation closer to the reality of the objects manipulated in machine. So the
torus elements will be seen as elements of Z, (but keeping the algebraic rules imposed by the
structure of T), and the same will be applied for ring extensions.

2.3 Encryption and Decryption in TFHE

Spaces. To understand the encryption procedure of TFHE, we must first introduce its plain-
text space and its ciphertext space, and how the former can be embedded into the latter.

The plaintext space of TFHE is the discretized torus T,. As explained in Section 2.2, we
trivially identify it to the ring Z, with p an integer. Conversely, the ciphertext space is the
discretized torus T, introduced in the previous section identified to a ring Z,, with ¢ = 22 In
practice, p < q.

We need a way to encode plaintext values into the ciphertext space. To do so, let us consider

a mapping p : Z, — Zg, defined as
2
prmi— | ——|.

p

The image of this mapping only reaches p elements in Z,, forming the set {L%—‘ | k€ Zp}.
These elements are distributed around Z,; and form what we refer to as sectors of Zy, defined

as: {((2k2—p 1)(17 (2k2—;1)q> ' ke Z} :

A representation of such a mapping is shown on Figure 2.1.
To encode a given plaintext element m into the ciphertext space, we use the corresponding

center of sector {%1. However, decoding is more permissive: every elements of a sector are

9

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

Figure 2.1: An example of embedding of Zg into Zgy

decoded by the corresponding plaintext element. This will be useful to remove the noise in
ciphertexts.

We can now move to the actual encryption and decryption algorithms. TFHE features two
main types of encryption: LWE encryption and GLWE encryption. Both share similar structural
patterns but operate within different mathematical spaces.

LWE Encryption. LWE encryption deals with scalar values. The plaintext space is Z, and
the secret key is sampled uniformly at random from B™. We denote by ¢ the ciphertext modulus.
We also need Xoe, @ centered Gaussian distribution of standard deviation opwe in Z,. The
encryption algorithm produces a ciphertext ¢ of the form:

Definition 2.3.1. (LWE ciphertext) A LWE ciphertext encrypting a message m € Z, under a
secret key s = (sg,...,8n—1) € B"™ has the form:

n—1
c = LWEg(m) = (ao, ey Qp_1,b= Z a; - 8; +m+ e) € Z;“H (2.1)
i=0
where:
o the elements a = (ag, ..., a,—1) are sampled uniformly at random in Z,.

« 1 is the message encoded in the ciphertext space: m = p(m) € Z,.

e e is a small random Gaussian noise sampled from Xge-

Decryption is performed in two steps: first, we compute the phase of the ciphertext as
¢(c) = b — (a,s). The phase corresponds to the noisy message m + e. To recover the actual
message, we simply decode the phase by looking up the plaintext element corresponding to the
sector. This can be interpreted as a rounding: m = E¢(c) .

As long as |e]| < %, this rounding produces the right sector center, and thus we recover the
correct plaintext value. Otherwise the phase lies in a different sector and we recover a wrong
value. It is thus very important to keep the noise level low enough to ensure correct decryption.

Security-wise, this encryption relies on the hardness of the assumption LWE, ;, 5,e)- The
dimensioning of these parameters should be handled properly to ensure security, correctness and
efficiency. Chapter 8 of this thesis will be dedicated to this question.

10

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

GLWE Encryption. This encryption mode mirrors the structure of LWE encryption but
operates within polynomial rings. This time, the plaintext space is T,[X]/(X" + 1), identified
with the ring Zy ,[X].
The secret key S is represented as a vector (Sp,...,Sg_1), sampled uniformly at random
k ~
from (IEB[X]/(XN + 1)) . The message is encoded in a polynomial M € Zy 4[X], with the same

encoding process than LWE (but applied coefficient-wise). The noise is also a polynomial from
the same ring, whose coefficients are drawn from the distribution Xoqe-
The encryption procedure outputs a ciphertext C of form:

Definition 2.3.2. (GLWE ciphertext) A GLWE ciphertext encrypting a message M € Zy p[X]
k
under a secret key S = (Sp,...,Sk_1) € (IBB[X]/(XN + 1)) has the form:

k—1
C = GLWEs(M) = (Ao, A, B=) A Si+ M+ E) € Zn 41 X]
i=0
where:
o the elements A = (Ao, ..., Ax_1) are sampled uniformly at random in Zy 4[X].

e M is the message encoded in the ciphertext space: M = p(M).
» E is a polynomial with small Gaussian coefficients, that are sampled from X e -

Decryption follows the same steps as the LWE case: the phase is computed as ¢(C) =
B — (A, S) and rounded to the closest plaintext value.

The security of this encryption relies on the hardness of the assumption GLWE 4 1 N ociwe)-
Because the plaintext is a polynomial of degree N, it is possible to trivially batch up to N
plaintexts from Z, by encoding them in the coefficients. With this method, they can be processed
in parallel by the linear homomorphism presented below (but not by the bootstrapping!).

To give an idea of the size of the objects at play here, n is usually chosen between 500 and
1000, ¢ is usually 254 and N is a power of two between 28 and 2'2. Chapter 8 is dedicated to
the problem of parametrization of the scheme, and gives further explanations on the role and
the range of each parameter.

A third encryption flavour, named GGSW also exists. We introduce it in Section 2.6 where
it is necessary.

2.4 Linear Homomorphisms

On a torus, two operations are well-defined: the sum of two torus elements and the external
product between a torus element and a scalar.

It is not hard to see that both TFHE encryption modes are linearly homomorphic. We define
the two operations sumTFHE and clearMultTFHE that we present in the following. We present
only the LWE version, but they can be trivially transposed to GLWE as well.

SumTFHE(c,c’): Let ¢ = (ag,...,an—1,b) and ¢’ = (ay,...,al,_;,V’) be two LWE ciphertexts
encrypting the messages m and m’ from Z,, with respective noise variance o and ¢’. Summing
coefficient-wise both ciphertexts yields a new ciphertext ¢ = (ag + ag, ..., an—1 +al,_1,b+ V)
encrypting m + m’ with a larger noise e + €’.

11

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

ClearMultTFHE(c, A\): Let ¢ = (ag,...,an—1,b) an LWE ciphertext encrypting a message m €
Zyp and X € Zj a constant. Multiplying each coefficient by the constant yields a new ciphertext
¢ =(\-ag,..., A\ ap_1,\-b) encrypting the message A - m with a larger noise A - e.

These notations will be used throughout this manuscript. However, sometimes when it is
clear from the context that we are referring to homomorphic operations, we may use the classical
+ and - symbols to lighten the formulas.

2.5 Keyswitching

We now introduce a more advanced operation: the KeySwitch. Let ¢ = LWEg(m) = (ao, ..., an—1,b)
be an LWE ciphertext encrypting a message m under the secret key s. KeySwitch allows the
server to homomorphically transform c into a new ciphertext ¢’ encrypting the same message m
under another secret key s’. This operation is very useful in practical settings: for example it
allows to switch between different ciphertext types and shapes to speed up some computations,
particularly in the bootstrapping algorithm. It is also central in some multi-client use-cases.

We start by explaining the LWE-to-LWE version of keyswitching and then generalize to the
ring case.

Some intuition on keyswitching. The rationale behind the keyswitching algorithm is to
homomorphically evaluate the linear part of the decryption function (namely b — (a,s)), given
an encryption of s under the key s’. This “encrypted secret key” is called the keyswitching key
and is denoted by KSK. Even if it looks a lot like a bootstrapping operation, keyswitching is
actually quite different. Notably, it increases the noise in the ciphertext (see [Chi420; Tap23]
for concrete noise analysis).

More formally, let KSK be the vector of encryption of every bit of the key s under the key

s’

KSK = {LWES’(Si)}0§i<n

Notice how, if we treat the coefficients a; (the mask of ¢) as scalar constants, we can homo-
morphically evaluate the product —(a,s) with the basic linear operations of TFHE. Moreover,
adding the constant b is easy if we remark that the trivial ciphertext TriviaLWE(b) = (0,...,0,b)
is a valid instance of LWEg (b). So the operation b — (a,s) is equivalent in the encrypted world
to:

b— (a,s) ~ TriviaLWE(b) — (a, KSK)
= LWEy (b — (a,s))
= LWEg (m + €)

and we effectively get a new encryption of m under s’ (at the cost of some extra noise).

However, there is a problem with this approach: recall that the a;’s are uniformly distributed
in the ring Z,. So they have in average a very large magnitude (about {). Also recall that
the scalar multiplication of TFHE increases the noise by the same factor as the multiplicative
constant. So if one uses this first version of keyswitching, the noise would completely skyrocket
and the result would be unusable.

Thankfully, there is a well-known way to improve the noise growth in the scalar multiplica-
tion: it is called gadget decomposition. We introduce it below:

12

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

Gadget Decomposition. To begin with, we introduce an exact version of the gadget decom-
position for clarity. The variant used in TFHE is an approzimate one, which is conceptually
only slightly more complex.

Recall that we want to compute the scalar product a; - LWEg(m), with a; a potentially large
value in Z,, without noise explosion.

The core idea is to work with a decomposition of the constant a; in some basis. Let (B, /)
be two integers such that B¢ = ¢q. We denote the decomposition of a; in this basis by:

-1
dec(&%)(ai) = (ai0,--.,ai¢—1) such that: a; = Z agj - B
j=0

In parallel, instead of working with a single ciphertext LWEg(m), we use a collection of ¢
ciphertexts, each encrypting a scaled version of m. These ciphertexts are fresh encryption, so
they all have the same fresh noise level opwe.:

2%
{WE(m -89}
Now, observe that instead of directly performing the product a; - LWEg(m), we can instead
performs the sum

/—1
Z a;j - LWEg(m - ‘Bj) with: dec(®) (ai) = (@i0,---,ai0—1)
=0

which yields the correct result. Computing the product this way makes the noise grow only by
a factor 9B - £ instead of a; (at the cost of storing ¢ ciphertexts instead of one).

Note that what we just presented here was a very simple case. A rigorous formalism of gadget
decomposition is developed in [GMP19], and some more analysis can be found in [Joy21].

One of the innovations of TFHE is the realization that approximating the decomposition
yields a significant performance improvement, at the cost of only a slight degradation of the
noise. More formally, a gadget decomposition can be described with two metrics: the quality
that quantify the maximal magnitude attained by the coefficients a;’s (the lower the better),
and the precision that quantify how close the output of the gadget decomposition is from the
ones of an exact decomposition. Seminal works on TFHE have shown that in practice it is
possible to construct gadgets ensuring simultaneously good enough quality and precision, while
significantly accelerating the computations and reducing the memory requirements.

So instead of taking exactly B¢ = ¢, TFHE uses smaller values such that 8¢ < ¢. In Chapter
8, we introduce a tool for parameter selection allowing (among other features) to construct good
gadgets.

Back to a better keyswitching. Coming back to the keyswitching algorithm, we pick de-
composition parameters (B, ¢) and add a dimension to the keyswitching key to store each scaled
version. So KSK becomes:

o = {0), 0L)

0<i<n

and we replace the simple scalar multiplications in the keyswitching algorithm by inner products
between the decompositions of each a; and each member of the keyswitching key. This gives us
the full LWE-to-LWE algorithm, that we detail in Algorithm 1

13

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

Algorithm 1 LWE-to-LWE KeySwitching
s: the input LWE secret key
s’: the output LWE secret key

0: the level of the decomposition

Context:

B: the base of the decomposition
c=(ag,...,an—1,b): a ciphertext LWEg(m)
Input:

KSK = { (LWEy (s; - %), LWEy/(s; - %5*1))}0<i<n: the keyswitching key

Result: cout @ a ciphertext LWEg (m)

Cout < (0,...,0,0)
fori€{0,...,n—1} do

‘ Cout < Cout — <dec(€’%)(ai), KSKz->
end
return c,,;

Generalization to GLWE. We introduced keyswitching in its LWE-to-LWE form, but every-
thing generalizes nicely to construct a LWE-to-GLWE flavour. Here, KSK is a collection of GLWE
ciphertexts, and the decomposition is applied coefficient-wise on the polynomials. The result-
ing GLWE ciphertext encrypts a polynomial whose degree-zero coefficient encodes the original
message.

It is then possible to pack several LWE ciphertexts into a single GLWE one, by multiplying
the results by different monomials to move the encoded coefficient in a higher degree. They can
then be summed. This is known in the literature as the PackingKeySwitch. As this will be
useful particularly in Chapter 5, we detail it in Algorithm 2.

Algorithm 2 PackingKeySwitch

s: the input LWE secret key
S’: the output GLWE secret key

£: the level of the decomposition

Context:
%B: the base of the decomposition
{ {ci = LWEg(m;) }g<jcq : @ list of a LWE ciphertexts to be packed, with o < N
Input: -

_)2 1 (85 - =1
KSK = {(GLWEsf(sl B°),...,GLWEg/(s; - B >)}0§z‘<
Result: Coy : a GLWE ciphertext encrypting the list of messages {m;}o<i<a

: the keyswitching key
n

Cout <0
for k€ {0,...,a—1} do
C). < KeySwitch(cy, KSK)
Cout — Cout + Xk : C;{

end
return C,,;

More possibilities exist in the literature: notably generalizing Algorithm 1 to define a GLWE-
to-GLWE flavour. It is also possible to evaluate functions while keyswitching by applying it on
the decomposed scalars (making it a public functional keyswitch) or on the encryption of the
bits of the original secret key (making it a private one). An in-depth tour of keyswitches can be
found in [Tap23].

14

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

2.6 External Products

In the previous section, we showed how the use of gadget decomposition allowed for practical
multiplications by constant. Actually, we can push it further: by using decompositions of
ciphertexts themselves, it becomes possible to multiply two ciphertexts together! By reference to
the original GSW scheme [GSW13], these decomposed ciphertexts are called GGSW ciphertexts
(for Generalized GSW).

We start by formalizing a bit more the notion of gadget decomposition: while several de-
composition algorithms exist on the literature, we focus in this thesis on the most classical one
(called canonical in the seminal paper of TFHE). We recall its definition:

Definition 2.6.1. (Gadget Matrix)
Let Zq n[X]**! be the domain of GLWE. Let the two positive integers ¢ and B be the base of
the gadget. The gadget matrix H € Zy o[X]F+HDO*+1 ig defined by:

q/B |...| 0

q/B' ... 0
0 |...] ¢/B
0 |...]q/®¢

Using this matrix, it is possible to define a new type of ciphertexts, called GGSW ciphertexts.
We give their classical definition below:

Definition 2.6.2. (GGSW ciphertexts) Let (8,¢) an approximate decomposition basis. A

GGSW ciphertext C encrypting a message M € Zy p[X]| under a GLWE secret key S = (Sp, ..., Sk—1) €

By,¢[X]* has the form:
C=Z+M -H

where each row of Z is a valid GLWE ciphertext of 0 for the key S.

In more recent works (for example [Chi+21] and its follow-ups), an alternative (but equiva-
lent) definition is used. We reproduce it here as well:

Definition 2.6.3. (GGSW ciphertext, second definition) Let (98, ¢) an approximate decompo-
sition base. A GGSW ciphertext encrypting a message M € Zy ,[X] under a GLWE secret key
S = (So,...,Sk-1) € Bny[X]* has the form:

GGSWs(M) = {(GLWES (—Sa M- q)) }
BI)) o<j<t 0<a<h

with Sy fixed by convention to -1.

These ciphertexts allow the definition of an external product. It is possible to multiply a
GGSW ciphertext (encrypting a message M;) with a GLWE one (encrypting a message Ms) to
obtain another GLWE ciphertext that encrypts the product M; - My. We denote this operation
by:

O : GGSW x GLWE — GLWE

Algorithm 3 details this procedure. As for KeySwitch, the External Product increases the
noise in the ciphertexts. Again, exact noise formulas can be found in [Chi+20; Tap23]. The line
of work of [Bou+20; Bel+24] gives a nice mathematical overview of how these decompositions
techniques can be interpreted as lifts from the Z-module structure to the underlying ring.

15

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

Algorithm 3 External Product
S: a GLWE secret key

Context: < ¢: the level of the decomposition

5. the base of the decomposition

Ci =<K, = (GLWES (—Sa M - q)) : a ciphertext GGSWg (M)
Input: BY) Jo<j<e 0<a<k+1

Cy = (Ay,...,Ax_1, B): a ciphertext GLWEg(M>)
Result: C,,; : a ciphertext GLWEg (M - M>)

Cout <~ <Kka dec(é’%)(B)>
for a € {0,...,k—1} do
‘ Cout — Cout - <Kou dec(&%) (Aa)>

end
return C,,;

Coer = GGSW(b)

CMUX

Co = GLWE(Mp)

C, = GLWE(M)

C, = GLWE(M,)

Figure 2.2: Representation of a CMUX operator

CMUX. Beyond adding a new homomorphic capabilities in TFHE’s arsenal, external products
are more importantly the workhorse of the whole bootstrapping algorithm that will be introduced
in Section 2.7. An external product can be used to construct a CMUX operation, defined as
follows:

Definition 2.6.4. (CMUX) Let Cs; be a GGSW ciphertext encrypting a bit b € B (the selector).
Let Cp and C; be two GLWE ciphertexts. The CMUX operation allows to homomorphically
select one of these two messages according to the value of the “selector” bit b by computing:

Cy=Csa @ (Cl — Co) + Cop

where [denotes the external product, and + the homomorphic sum of TFHE. It produces a
new ciphertext Cj encrypting the message M.

We can now move to the most important feature of TFHE: the programmable bootstrapping.

2.7 Programmable Bootstrapping

Programmable Bootstrapping is a quite complex construction. To present it, we start by an in-
formal presentation (Section 2.7.1) and then move to the actual algorithm (Section 2.7.2). In the
first informal part, we make some oversimplifications to make the process easier to understand.
For a rigorous presentation of the algorithm, one shall refer to the second section.

16

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

2.7.1 An Informal Overview of Blind Rotation

Recall Gentry’s blueprint introduced in Section 1.2. To be bootstrappable, a scheme requires
to be able to evaluate its own decryption circuit in the encrypted space using its homomorphic
capabilities.

In TFHE, for an LWE ciphertext ¢ of form (ag,...,an—1,b), encrypted under a key s, the
decryption algorithm has two steps:

- Computing the phase ¢(c) = b — (a,s) (“the linear step”),
- Rounding the phase to the closest plaintext value (“the rounding step”).

Performing the first step homomorphically is quite simple to do (in fact, this is exactly what
we do in the keyswitching algorithm). But performing the rounding is trickier. Actually, TFHE
do both operations at once using an operation called blind rotation, which is the core of the
bootstrapping algorithm.

Introduced in [DM15], the blind rotation takes advantage of the particular structure of the
ring Zy 4[X]. To explain this algorithm, we start by taking a closer look to this ring.

N-1
Fun with Rings. Let v(X) = Z v; X" be an element of the ring Zy ,[X] = Z,[X]/(XN +1),

=0
and let p be an integer. Observe what happens when we multiply this polynomial with the
monomial X #:

X H. 'U(X) =Vy+ Vyt1 - X+ + Un_aniliu—?}oXni'u— S —?}u_anil.

What we can take away from this is that the monomial multiplication simply performs a
rotation of the polynomial’s coefficients (overlooking the red minus signs). In the bootstrapping
algorithm, the blind rotation is used to bring the wanted coefficient in first position (so, in the
degree-zero slot). If we want to rotate the polynomial such that the u-th coefficient is brought
into the degree-zero one, we just have to multiply the polynomial by the monomial X ~#.

But there’s a problem here. When the coefficients are “sent to the other side” of the poly-
nomial, they get an extra minus sign. So actually, a multiplication by X~ does not yield the
initial polynomial, but rather the “opposite” one. To make a complete round trip, it requires to
multiply instead by X2V, This is natural because X has order 2N in Zy 4[X]. In the literature,
this problem is called the negacyclicity problem and we dive deeper into it in Chapter 3.

The goal here is to introduce blind rotation without the complexity induced by the negacyclic-
ity problem. So for now, we assume that the exponent of the monomial lives in {0,..., N — 1}.
As we are only interested in the value of the degre-zero coefficient, we can safely overlook these
minus signs as they can not reach it.

Constructing a rounding function. How can we use the above property to construct a
rounding function? Suppose we have a plaintext space Z, and a ciphertext space Z,. Let c be
an LWE ciphertext, and p = ¢(c) = m + e its noisy phase produced by the linear step of the
decryption algorithm. We want to round g to the closest plaintext in Zj, to retrieve the message
m.

To do so, we are going to use a specifically tailored polynomial, called the accumulator
polynomial acc(X). This polynomial is made of contiguous “windows” of size % in which every
coeflicient is equal to each others. Coefficients of the window of index 0 have value 0, for index
1 the value is 1, and so on. These windows are centered on the p coefficients corresponding to
the noiseless encodings of the plaintexts values in Zy. We illustrate such an accumulator on
Figure 2.3 (in the “Rounding version”).

Our rounding procedure takes three steps:

17

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

Rounding version:

RS IS ENES P G TP GRS IS G 1 L v) (15 CE

Programmable version:

BN 0x e [e e e

Figure 2.3: Ezxample of an accumulator polynomial with p = 4 and N = 64, used to evaluate a simple
rounding operation.

1. Switching the modulus of u to send it into Zy to produce ji = {’%W
2. Computing the product X - acc(X).

3. Extracting the degree-zero coefficient to retrieve v; (the fi-th coefficient of the initial
accumulator).

If the noise |é| in f1 is smaller than half the width of a window (here 2%), we properly get
Uﬂ =m.

Making it programmable. This rounding using polynomials is the core idea of the boot-
strapping algorithm. But actually, the killer feature of TFHE is that you can transform this
rounding operation into a look-up table evaluation! This is why TFHE’s bootstrapping is called
programmable.

It is simply done by replacing the coefficients of the accumulator by the evaluations of a
function f : Z, — Z,. So, the algorithm outputs f(i) instead of ¢! This is illustrated on Figure
2.3 (in the “Programmable version”).

In the next section, we introduce the actual instantiation of the PBS algorithm, without the
oversimplifications we made in this section.

18

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

GGSW(s0) GGSW(s1)
Xb=a0 . acc(X) Xb-aoso—ar . acc(X)
Xb-aoso—arsi . gec(X) []
CMUX ﬂ CMUX cee
Xb . acc(X) Xb=aos0 . acc(X)

Figure 2.4: Illustration of the BlindRotate algorithm, implemented as a chain of CMUX.

2.7.2 The Full Algorithm

We consider an LWE ciphertext ¢ = (ao, . .., an—1,b) with large noise, that we want to bootstrap.
It is encrypted under the LWE secret key s.
The server requires a bootstrapping key, that we denote by BSK, defined by:

BSK = {GGSWs(si) }o<icn
where S is a GLWE secret key, of dimension k and degree V.

TFHE’s bootstrapping algorithm can be broken down into three steps: ModSwitch, BlindRo-
tate and SampleExtract.

ModSwitch. The coefficients of c live in Z,;, but the polynomials of the GLWE ring have de-
gree N. Recall from last section that we would like the exponent of the monomial used in
BlindRotate to live in Zon (because X has order 2N in Zy 4[X]).

The simplest case would be to choose directly ¢ = 2N. However it does not work in practice:
by enforcing such a constraint, it is impossible to construct an LWE instance which is secure and
that enables fast arithmetic. So we need to switch the modulus of ¢ to produce a new vector €
living in the right space. This is simply done by computing:

it (|2 e b= FE]]

This operation adds some extra noise in the ciphertext, that is called drift in the litera-
ture. [Ber+25] provides an in-depth study of the behaviour of this noise, as well as alternative
strategies to mitigate it.

BlindRotate. In the previous section, we introduced the rationale behind blind rotation. We
use a polynomial called accumulator that we rotate using a multiplication by X, where [is
the (noisy) phase resized in Zay.

For now, we do not specify the actual formula of the accumulator. Several possibilities exist
and depend of which countermeasure against the negacyclicity problem is chosen. We elaborate
further on the construction of this polynomial in Chapter 3.

After ModSwitch, the coefficients of € live in the right space Zsn. It remains to compute the
product X - acc(X) homomorphically. This operation can be carried out by a chain of CMUX.

This idea comes naturally if we rewrite the expression of the monomial X % as:

_ _ n—1 _ n—1 a; 3 L
XA — X—(b—(é,s)) — xb. H xaisi — x b, H {Xa if s; =1
bt o (Lifs;=0
This leads to the natural algorithm depicted in Algorithm 4.

BlindRotate outputs a GLWE ciphertext encrypting the rotated accumulator under the
GLWE key S. The degree-zero coefficient of this polynomial encodes the rounded message. The

19

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

Algorithm 4 BlindRotate
s: a LWE secret key
S: a GLWE secret key

Context:
f :Zy — Zy: a function on the plaintext space.
acc(X) € Zy 4[X]: an accumulator polynomial encoding the function f.
I ¢ {6 = (@0, - - -, an-1,b) € Zhx": a modswitched LWE ciphertext, with ji = b — (&, s)
nput:
BSK = {GGSWS’(Si)}O§i<n

Result: Coy = GLWEg (X - acc(X))

Cout + Trivial GLWE(acc(X) - X?)
for i € {0,...,n—1} do
‘ Cout CMUX(Couty Xai. Cout, BSKZ)
end
return Co,;

problem is that we started with an LWE ciphertext, so if we want to keep computing (and so
evaluate other PBS) we need to switch back to LWE encryption.

This is done in two steps: the SampleExtract that we introduce in the following, and then
a regular LWE-to-LWE KeySwitch (that we introduced in Section 2.5).

SampleExtract. Let C = GLWEg/ (M) be a ciphertext encrypting the polynomial M = Zi]i_ol m; X"
The SampleExtract takes as input a GLWE ciphertext and an index «, and output a ciphertext

¢ = LWE; (my) where §' is a flattened version of the GLWE key.

Definition 2.7.1. (Flattened GLWE key) Let S = (SO =N s X, Sk = Y0 sk_l,ij) €
Zn 4[X]E. The flattened version of this key is a LWE secret key:

s = (50, R 7§kN—1) € Z];N
such that s,y ; =s;; for 0 <i<kand 0 < j < N.

SampleExtract is actually a simple rearrangement of the coefficients of the ciphertext: its
computational cost is negligible and it does not add any noise in the ciphertexts.

In the PBS, SampleExtract is run with o« = 0. After that, we have an LWE ciphertext
encrypting the right value but with noise smaller than in the input. However, the key of this
ciphertext is the flattened version of S’. To close the loop, we need to come back to the original
key s. This is done with a simple LWE-to-LWE keyswitching.

Putting it all together. This serie of operations allows to evaluate a bootstrapping. The
final keyswitching produces a ciphertext of same morphology and same secret key than the input
one, so it is possible to loop and evaluate successively several functions. Linear operations can
be interleaved in this loop, at any stage. On Figure 2.5, we show such a loop, where linear
operations take place before the final keyswitching.

2.8 Performances of the PBS

In the FHE space, bootstrapping operations are notoriously heavy and slow operations. In the
case of TFHE, it is relatively low-latency.

One key aspect of TFHE is the degradation of the speed of the bootstrapping when the plaintext
modulus p grows. We ran some quick experiments on a laptop to show this degradation. The
results are displayed on Figure 2.6.

20

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

Algorithm 5 SampleExtract
S" = (S,...,5},_1): the input GLWE secret key

!

s'=(80,...,8kn—1): the output LWE secret key
VOo<i< k, SZ = Z;V:_Ol 5iN+ij

Context: N—1 , .
M =372, m;- X" a polynomial message
V0 <i< k,AZ‘ = Z;V:_Ol ai,ij
B =y XI
C = (Ao,...,Ax_1, B): a ciphertext GLWEg(M)
Input:

a€{0,...,N — 1}: the index of the coefficient to be extracted
Result: cou¢ @ a ciphertext LWEg (mq)

b« b,
for 0 <i< kdo
for 0 <j<ado
‘ a’/L'-NJrj = Gj,a—j
end
fora+1<j< N do
\ a;~N+j & —Q§,N+ta—j

end
end
Cout < (ag,...,a) y_1,0)
KSKs s & BSK D
& \)
& &] &
~ \/ $@% (9&
KeySwitch /—> ModSwitch —>—/—3 BlindRotate —/— SampleExtract

\J \J
$ - —
v inear Operations ¥ 7

Figure 2.5: The PBS circuit, with the inner operations and the shapes of the ciphertexts at every step.
Some arbitrary linear operations are interleaved in the middle. We also illustrate indicative noise levels
in the gauges under the wires.

21

CHAPTER 2. PRESENTATION OF THE TFHE SCHEME

700 A

600 -

500 A

400

timing (ms)

300

200

100 A

2 3 4 5 6 7 8
precision (bits)

Figure 2.6: Timings of the PBS with respect to logy(p), where p is the plaintext modulus

Intuitively, the reason of this degradation is simple. When one wants to use a greater p, the
torus must be sliced into more parts, that are thus smaller. When we switch the modulus to 2V
in the bootstrapping, the “windows” of the accumulator polynomial gets smaller, so the bound
on the noise to ensure correct bootstrapping must be smaller. To keep some room to enable the
homomorphic capabilities of TFHE, one has to pick a greater value for the degree N. As this
must be a power of two, it quickly reach values where the polynomial operations gets very slow.

Usually, PBS is not used for plaintext modulus greater than 8 bits. Some constructions exist
in the literature to extend the capabilities of this algorithm to larger plaintext spaces, notably
the tree bootstrapping of [GBA21] and the Without-Padding Programmable Bootstrapping.
See Section 3.3 and 7.4 (WoP-PBS) of [Chi+21]. In this thesis, we propose our own method in
Chapter 7.

22

Chapter

3

I Overcoming the Negacyclicity
Problem with an Odd Plaintext
Modulus

In Section 2.7, we presented the algorithm of the PBS. But we left a question unanswered: what
is the actual composition of the accumulator polynomial acc(X)? This is a tricky question,
because this definition depends on the countermeasure picked against the negacyclicity problem
(that we briefly introduced in Section 2.7.1).

In this chapter, we formalize the negacyclicity problem. We then present the classical coun-
termeasure (the strategy of the padding bit), and our technique of odd plaintext modulus, which
is a foundational block for the following contributions presented in this thesis. We finish by going
through several others works that propose different countermeasures.

3.1 Basics on Negacyclicity

What is negacyclicity ? Let v(X) be a polynomial of the ring Zy 4[X], such that v(X) =
Zév;()l v X*. Recall how a multiplication by X in this ring “rotates” the coefficients of the
polynomial:

X -v(X)= —ON_1 vy X Foy o XV

In TFHE’s blind rotation, the polynomial multiplication is done by the monomial X ~#, with
g€ {0,...,2N — 1}. This leads to two problems:

o A coefficient v; can be brought in first place by two different rotations: the one induced
by the polynomial multiplication by X[~7l2v and the one by X[=7+N2v Tt means that
two different messages produce the same output.

« Each time a coefficient goes last to first, it gets negated (because X~ = —1 in the ring).
So actually, the multiplication by X[=712¥ yields correctly vj, but the one by X[=i+Nlan
yields —wvj.

As the actual value of [is encrypted, this is not possible to predict beforehand whether this
undesirable minus sign will appear or not. So a countermeasure needs to be implemented into
the scheme to neutralize the negacyclicity problem. The most frequent strategy is to develop
encodings for the LUT f in the accumulator specifically tailored to handle this issue.

The “natural” case. Some functions interact naturally very well with the blind rotation
algorithm: these are called the negacyclic functions and they are presented in Definition 3.1.1.

Definition 3.1.1. (Negacyclic Function) Let p and p’ be two positive integers, with p even. A
function f : Z, — Z, is negacyclic if and only if it satisfies the following property:

23

CHAPTER 3. THE NEGACYCLICITY PROBLEM

Vo e, f ({x + ’;L) — [~ f(@)],

With such functions, the accumulator is quite simple to build: intuitively we only fill it with
the values of the first half of the torus (so the f(z) with = € [0,5 —1]). So, if we rotate by the
p

. " P) .) .
value corresponding to i > §, a minus sign appears and we retrieve correctly — f (i — 5) .

We give an explicit formula for this accumulator in Definition 3.1.2

Definition 3.1.2. (Negacyclic Accumulator) Let p and p’ be two positive integers, with p even.
Let f : Z, — Zy be a negacyclic function. Let N be a power of two. Then, the accumulator
acc(X), defined by:

2N/p—1 2—-1
negacyclic __ 2N /" j A N i 2 N
acc(X) =X - Y X7 > f(()X"» mod (XN +1)
=0 i=0

is a valid accumulator for the blind rotation. It means that running the BlindRotate algorithm
with this accumulator yields the right value.

Remark on the encoding: f(i) is an element of the plaintext space Z,. In the context of
this definition, we refer to its encoding into the ciphertext space Z, (according to the procedure
of Section 2.3). That is to say, we actually put {%1 in the coefficients of the polynomial.
Unfortunately, this construction is merely theoretical. Indeed, in practical setting, restricting
the functions to be evaluated by PBS only to negacyclic function greatly limits the capability
of the scheme. In order to be able to evaluate any function in the PBS, more sophisticated

techniques are required. We introduce the first example of such technique in the next section.

3.2 The Classical Countermeasure: the Bit of Padding

The first countermeasure, that already appeared in the original TFHE paper, is called the bit
of padding. As in the ideal case presented in the previous section, it works in an even plaintext
space.

The idea is to ensure that the message stays in the first half of the torus all along the
computations. An equivalent way of presenting it is to force the Most Significant Bit (MSB)
of the message to zero. By doing this, the modswitched phase used as the exponent in the
blind rotation f lives in {0,..., N — 1}, so the arising minus signs never reach the degree-zero
coefficient.

The advantage of this method is that it relaxes the negacyclicity constraint and makes
the bootstrapping able to evaluate any function (not only the negacyclic one). However, this
construction is rather fragile: any linear function can break it by propagating a carry into the
MSB.

To avoid this, when evaluating an homomorphic circuit, the program needs to keep track of
the maximal value that each homomorphic operation can yield and make sure that it will never
propagate a carry into the MSB. This often leads to extra bootstrapping to control the growth
of the message and eliminate the overflows.

In the following, we give the definition of the accumulator acc(X) in this “bit-of-padding”
case:

24

CHAPTER 3. THE NEGACYCLICITY PROBLEM

Definition 3.2.1. (Bit-of-Padding accumulator) Let p and p’ be two positive integers, with p
even. Let f : Z, — Z, be a function. Let NV be a power of two. Then, the accumulator acc(X):

B N/p—-1 ‘ p—1 ’
acc(X)bitofpadding _ x5 > oxiy FHXF mod (XN +1)
j=0 i=0

is a valid accumulator for the blind rotation.

Remark on the encoding: Contrary to the purely negacyclic case of Definition 3.1.2, f(i)
is not encoded in the Most Significant Bits of the polynomial’s coefficient. Instead, the MSB is
reserved and fixed to zero to maintain the encoded value in the first half of the torus. That is

fi)q (l)'ﬂ in the coefficients of the polynomial.

to say, we actually put { 5p

An example of such an accumulator is shown on Figure 3.1.

Bit-of-Padding Accumulator:

O r)X -+ fOXT | F@X2 4+ f)XT RGO IR

Figure 3.1: An example of bit-of-padding accumulator, with p = 4 and N = 32. Hatching shows the parts
which have an additional minus signs.

The drawback of the bit-of-padding padding makes very challenging the development of
homomorphic applications, because it prevents to use the linear operations freely. One should
keep track of the maximal value contained in a ciphertext to avoid an overflow that would fill
the padding bit. In Chapter 4, we will demonstrate how this method makes the evaluation of
Boolean circuit very inefficient, and we propose a new method that improves it.

Other constructions have been developed to avoid these drawbacks, we present them in
Section 3.3.

3.3 Other Countermeasures Avoiding the Bit of Padding

Because the classical bit-of-padding solution brings too many constraints on the evaluation of
computational circuits, several alternative constructions have been proposed to homomorphiclaly

25

CHAPTER 3. THE NEGACYCLICITY PROBLEM

evaluate LUT. To do so, many of these constructions adopt a similar strategy: they decompose
the target function into a sequence of several PBS steps.

A notable line of work, including [Yan+21], [LMP22], and [KS23], employs a two-step PBS
strategy. In these approaches, the first PBS evaluates a quantity encrypting the bit indicating
whether the message lies in the positive or negative half of the torus. This effectively extracts the
“sign” of the message. The second PBS then evaluates the actual function of interest regardless
of the effects of negacyclicity, producing a result that may be flipped in sign. The ambiguity
introduced by this flip is corrected using the result of the first PBS. While the specific techniques
used to perform this correction vary across works, the overall architecture remains the same:
use the first PBS to identify the torus half, and use this information to rectify the sign of the
second PBS output.

Another interesting approach is presented in [Cle+23], where the target function is expressed
as a sum of functions sharing a particular structure: so-called pseudo-odd and a pseudo-even
function. These two properties are special cases of negacyclic functions, so they allow an eval-
uation with a PBS without suffering from the negacyclicity issue. Although this decomposition
may require more than two PBS calls, an important advantage of the method is that the evalu-
ations can be carried out in parallel. This contrasts with the previously mentioned approaches,
which are intrinsically sequential due to the dependency between the two PBS stages.

A completely different line of work is explored in [Chi+21], which introduces the “Without-
Padding PBS” (WoP-PBS) construction. A more refined version of this technique is presented
in [Ber+23a], and we describe it here. The method begins by evaluating a scaled sign function
(that is inherently negacyclic) using a standard PBS. Following this, the individual bits of the
message are extracted and converted into GGSW ciphertexts (see Definitions 2.6.2 and 2.6.3)
using a procedure known as circuit bootstrapping. These ciphertexts are then used as selectors
in a graph of CMUX operations (Definition 2.6.4) to select an appropriate accumulator based on
the high-order bits of the message. Finally, a traditional PBS is used to rotate the selected
accumulator according to the remaining lower-order bits.

Although this technique is slower for small plaintext sizes, it scales particularly well with an
increasing plaintext sizes. Notably, it enables the homomorphic evaluation of LUTs with larger
plaintext sizes beyond what is feasible with classical PBS techniques, up to approximately 20
input bits.

In this thesis, we focus on a method we introduced in [BPR24]: the odd plaintext modulus.

3.4 Our Contribution: the Odd Plaintext Modulus

Negacyclicity has a quite different effect depending of the parity of the plaintext modulus p.
Recall that © = m + e € Z,, with e sampled from a small centered Gaussian. Because the
error is small, ;v does not take all the values of Z, with the same probability: in particular, the
densest parts in terms of probability over Z, are the one close to the “noiseless” encodings of m,
namely { {%W ‘ k € Zp}. We illustrate this distribution on Figure 3.2. We call these sections of
the torus the dense spots.

When we transpose these dense spots into Zsn, they become the sectors close to { V%-‘ | k € Zp}.

k-2N
Let k € Zy, the multiplication X » -v(X) in the ring Zy 4[X] yields the same degree-zero

_ k2N
coefficient as the multiplication X [~ v(X), up to the minus sign. To make the rest
of this section clearer, we change a bit the writing of the exponent as such:

—k-2N —k+£8)-2N
{ N N} _ <>1
p 2N p aN
_ py.
This is where the parity of p plays a part: if p is even, then (k+2)2N] is a dense spot
2N

26

CHAPTER 3. THE NEGACYCLICITY PROBLEM

Figure 3.2: Distribution of the values of p across Zg for p = 6 and p = 5: the colored parts show the
dense spots where the value has a high probability to lie in. The width of these sectors depends on o (the
standard deviation of the error distribution x of TFHE). Note that this repartition looks similar for i in

ZQN.

p=25
(a) With p even, the dense spots of each half of the torus (b) With p odd, the dense spots face empty spots, close
are aligned. to the bounds of the p-sectors.

Figure 3.3

as well. So collisions happen with high probability. On the other hand, let us consider an odd

—k+E)2N . ol
value for p. Then, [(erz)2 is no longer a dense spot, as it lies exactly halfway between
—k+221yaN —k+EtyaN ..
the two dense spots {H;’ﬂ] and [Hzfﬁ} . As a consequence, collisions never
2N 2N

occur. Figure 3.3 illustrates this phenomenon.

So, by selecting odd values for the plaintext modulus, the negacyclicity problem is naturally
neutralized.

We present in Definition 3.4.1 the formula for the accumulator in this case. Note that because
N is a power of two and p an odd value, some rounding is required in the quotient %, but we
omit it to keep notations lighter, (or equivalently, the division operator is assumed to include
rounding).

Definition 3.4.1. (Odd-case Accumulator) Let p and p’ be two integers, with p odd. Let
f:Zy— Zy a function, and N a power of two. Then, the accumulator acc(X) € Zy 4[X] has

27

CHAPTER 3. THE NEGACYCLICITY PROBLEM

the form:
N/p—1

p—1 p=1l_4
N . 2 2N E +1 ;2N
acc(X)odd-modulus _ y =35 X7 . Y G _ (H— p) i
(X)]ZO gf() ZO f 5

N
P

Remark on the encoding: With this construction, we do not need a bit of padding anymore.

So, the values f(i) are encoded using the simple encoding of Section 2.3, that is to say {%W

Let us explain the structure of this accumulator. The polynomial has degree N and is
made of p distinct windows of width %. Each of these windows has constant coefficient value
f(k), for k € {0,...,p —1}. For 0 < a < p%l, the range of degrees whose coefficients are
f(a) is {aw—ﬂ ; a%—i—%}. Now, for % < B <p-—1, we can write 8 = a + 2L, with

p 2p 2
0<a< %. This time, the range of spanned degrees is [a% + % ; (a+ 1)% — %} Thus,
the values k € {0,...,p — 1} spans the entire space [0; N) without overlap. The values over %

gets negated by the negacyclicity, so the underlying coefficient is also negated to compensate
this effect. We illustrate this construction on Figure 3.4.

Odd-Modulus Accumulator:

L0 P87 NN 777723 10)

Figure 3.4: Illustration of the construction of the Odd-Modulus accumulator. On top is the ring Zon
splitted in windows. Below is a representation of the polynomial v, with its version once rotated by a
multiplication by X~. On the figure, p = 5 and N = 32. Hatching shows the parts which have an
additional minus signs

If we compare this approach to the bit-of-padding one, the windows have half the size. So
we may think that the bound on the maximal noise to ensure correctness must be twice tighter.
However, because the bit-of-padding accumulator makes use of only one half of the torus, the
windows actually have the same width if we consider the same size of plaintext space. In Section
4.6.1, we elaborate further on how the parametrization of the scheme is handled in this case.

With this technique, no bit of padding is required. Consequently, it allows to use the linear
homomorphisms without worrying about carry propagation. This is a key improvement that is
at the root of the works presented in the rest of this thesis.

28

CHAPTER 3. THE NEGACYCLICITY PROBLEM

3.5 Conclusion

Our idea of employing odd plaintext moduli that we developed in Section 3.4 do not have any
computational overhead with respect to the classical bit-of-padding technique of Section 3.2,
while removing all the constraints the latter put on the homomorphic compilation. This is not
the case of the other methods of the state of the art that we summed up in Section 3.3, which
all increase the amount of computation

However, working with an odd modulus may seem unhandy: data types in programming are
usually defined on a power-of-two modulus for example. But we show in the following chapters
(Chapter 4, 5, 6 and 7) that this introduces new applications and homomorphic capabilities to
TFHE.

29

CHAPTER 3. THE NEGACYCLICITY PROBLEM

30

Chapter

4

I Accelerating the Evaluation of
Boolean Circuits with
p-encodings

TFHE being the most efficient scheme to handle data of small precision, it is a natural choice
when it comes to evaluate homomorphically Boolean circuits. However, performances of the
existing frameworks are still limited.

The most straightforward method, already introduced in the original TFHE paper [Chi+20)]
under the name gate bootstrapping, consists in running one bootstrapping for each bivariate
Boolean gate of the circuit. As a consequence, the conversion of the original Boolean circuit in
a homomorphic circuit handling encrypted bits is straightforward, moreover the noise growth
is contained thanks to the systematic use of bootstrapping. However, this approach is very
expensive due to the high numbers of bootstrappings and makes it quite suboptimal for large
circuits.

In this chapter, we introduce a new framework to homomorphically evaluate Boolean func-
tions on encrypted data efficiently, i.e. by reducing the amount of necessary bootstrappings. Our
approach introduces an intermediate homomorphic layer which encodes the bits (elements of Zs)
on a small ring Z, before encrypting them. This allows us to evaluate Boolean functions with
one cheap homomorphic sum followed by one bootstrapping. After formalizing the underlying
concept of p-encoding and explaining our evaluation strategy, we investigate the issue of finding
valid sets of encodings for a Boolean function. We characterize this problem and provide an exact
constructive algorithm to solve it. We further provide a sieving heuristic finding solutions more
efficiently but at the cost of loosing optimally. Since our method is only efficient for Boolean
functions with limited number of inputs, we also propose a heuristic to decompose any Boolean
circuit into Boolean functions which are efficiently evaluable using our approach. Finally, we
apply our technique to various cryptographic primitives, namely the SIMON block cipher, the
Trivium stream cipher, the Keccak permutation, the Ascon Substitution Box. A substitution
table in a symmetric-key algorithm (S-box) and the AES S-box. Compared to previous works
implementing the same primitives (for SIMON, Trivium and AES) our implementations achieve
significant speedups.

After some technical preliminaries on Boolean circuits (Section 4.1), we introduce a new
concept of intermediate homomorphic layer and explain how bits are encoded in Section 4.3 and
the algorithms to construct it in Sections 4.4 and 4.5. Finally, we describe some implementation
works in Section 4.6 and our experimental results in Section 4.7.

4.1 Preliminaries on Boolean Functions and Boolean Circuits

A Boolean function has the form f : B — B, with ¢ being called the arity of the function.

Definition 4.1.1. The Algebraic Normal Form (ANF) of a Boolean function f : {0,1}¢ ~ {0,1}
is a polynomial expression in which each term corresponds to a specific input combination of n

31

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

variables. The ANF is defined as follows:

f(:L’l, T2y ,xl) =agDPa1x1 Pagxo D ... D agm_121T2...2]
where: ag, a1, az,...,a9_; € {0,1} are the Boolean coefficients and
r1,xo,...,xy are called the Boolean variables

This result means that any Boolean function can be evaluated by the means of AND and XOR
operations. In the following, we will focus on the implementation of Boolean circuits composed
of these operations exclusively.

A Boolean function can be represented by its truth table, which is simply a table gathering
all the possible inputs and the corresponding result of the application by the function. It can
also be represented with a Boolean formula. A third representation is the Boolean circuit:

Definition 4.1.2. A Boolean circuit associated to the Boolean function f is a finite Directed
Acyclic Graph whose edges are wires and vertices are Boolean gates representing Boolean oper-
ations. We consider AND gates and XOR gates, of fan-in 2 and fan-out 1. We also consider copy
gates, of fan-in 1 and fan-out > 1, that outputs several copies of its input. A circuit is further
formally composed of input gates of fan-in 0 and fan-out 1, and output gates of fan-in 1 and
fan-out 0.

Evaluating a f-input m-output circuit consists in writing an input x € B’ in the input gates,
processing the gates from input gates to output gates, then reading the outputs from the output
gates.

This notion of Boolean circuit will be particularly useful in Section 4.5.

4.2 State of the Art on Homomorphic Boolean Computations

Let f: B! — BY be a Boolean function. There are two ways of handling its computations, and
thus designing its homomorphic version

¢ As a multivariate table: The programmable bootstrapping of TFHE can be seen as
a homomorphic lookup table evaluation. So we can imagine evaluating the function all at
once with a unique (and potentially large) bootstrapping..

o As a Boolean circuit: If we look at f as a Boolean circuit (see Definition 4.1.2), then
it is sufficient to design a homomorphic version of each Boolean gate. Then, it is quite
easy to concatenate the blocks to evaluate any function we want, not only f

While both techniques seems straightforward, there are not a viable solution in practice.
This section attemps to explain why, and presents the state of the art for the two strategy:
evaluating f as a LUT or as a Boolean circuit:

As a LUT: The algorithm of TFHE’s programmable bootstrapping takes only one ciphertext
in input, so one may think that it can be programmed only with univariate functions. However,
there is an easy workaround allowing to evaluate multivariate functions. To evaluate a ¢-bit LUT,
you pick p = 2¢ for the plaintext modulus. Each input bit is encoded in the Least Significant
Bit (LSB) of one value in Z4¢, and encrypted in a separate ciphertext. Now, to evaluate the
function f, the i-th input is shifted into the i-th least significant bit by a multiplication by 2°.
They are then all summed together to encode the value by_1bs_o...b1by and the LUT can be
processed by a bootstrapping on ¢ bits.

This approach does not scale well when the number of inputs ¢ increases. Indeed, working
in a larger plaintext space slows terribly the PBS algorithm. On the other hand, using a circuit
representation ensures a constant time for the bootstrapping algorithm no matter the number
of inputs.

32

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

As a circuit: As we introduced in Section 4.1, any Boolean function can be easily compiled
into a Boolean circuit made of XOR and AND gates.

If we naturally pick the plaintext modulus p = 2, XOR operations are evaluable with the
homomorphic sum of TFHE, which are computationally free (at the cost of a slight noise growth).
However, evaluating the non-linear gate AND requires bootstrapping. As we explained in the
previous paragraph, bootstrapping is a univariate operation but it is possible to turn it into a
bivariate one by using two bits of plaintext instead of one (so p = 4). But this is not the end of
it ! Because 4 is even, the negacyclicity problem applies and we need a third bit to work as a
padding bit, so working with p = 8.

The problem now is that XOR can no longer be evaluated with a simple sum, because carries
would propagate into the MSB and ruin the correctness. So one would need one bootstrapping
per Boolean gate to evaluate the circuit while keeping the MSB clean. This is the solution
implemented in tfhe-rs library [Zam22c]!.

[Chi+21] proposes a different approach: by leveraging a newer version of the TFHE scheme
supporting multiplications of LWE ciphertexts, Boolean circuits are evaluated with homomorphic
sums for XOR gates and this new multiplication operation for AND gates. While this approach
is clearly a progress from the vanilla framework, we note that a few bootstrappings are still
required to control the noise growth and that this new operation of LWE multiplications remains
costly both in terms of performances and in terms of noise. Thus, we choose to stick to the first
version of the TFHE scheme to keep the framework lighter and we tackle the performance issues
of [Chi+20] with a different approach than the one of [Chi+21].

We have just seen that both approaches do not scale well for different reasons: LUT because
of bootstrapping complexity and circuit because of the number of bootstrapping occurences. Our
approach attempts to gain the best of both worlds: we construct a constant-time bootstrapping
for any number of inputs (solving the LUT problem), while using only one bootstrapping to
evaluate the entire function (solving the circuit problem).

4.3 Boolean Encoding over Z, and Homomorphic Evaluation
Strategy Between B and Z,

We propose a construction in which we embed Boolean values in Z,, for well-chosen values of p,
forming an “intermediate homomorphic layer” between B (the plaintext space of bits) and Z,
(the ciphertext space). In the following, we explain how we define such a layer, and we describe
our new strategy to evaluate Boolean functions in a more efficient way without considering the
circuit representation of the function. Note that we generalize this construction to arithmetic
spaces in Chapter 5.

4.3.1 Encoding of B over Z,

To represent Boolean values over Z,, we use a mapping function that we call a p-encoding:

Definition 4.3.1 (p-encoding). A p-encoding is a function &£ : B — 2% that maps the Boolean
space to a subset of the discretized torus. A p-encoding is valid if and only if:

{5(0) NE() =0 and (4.1)

if piseven: Vo € Z,,VbeB:z € E(b) < [$+§]p¢5(b)

We call this last property relazed negacyclicity.

!more precisely, in the boolean crate.

33

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

Ezample with p = 15 Example with p =16

Figure 4.1: Representation of two valid p-encodings. The green part represents £(1), and the red part
£(0). Note that even if p is even on the right-hand figure, the relaxzed negacyclity is still respected.

In our approach when we need to encrypt a bit, we apply a p-encoding to embed it in Z,,
then we encrypt the result using the classical setup of TFHE. When new values are freshly
encrypted or produced by a PBS, only one element of Z,, is chosen for each bit. We call such an
encoding a canonical p-encoding:

Definition 4.3.2 (Canonical Encoding). A p-encoding & is said canonical if and only if it is
valid and [£(0)] =|E(1)| =1

Let ¢ be a ciphertext encoding a bit b under a p-encoding £, where £ is an arbitrary valid
encoding: its associated subsets can be any subset of Z, as long as the validity requirements of
(4.1) are fulfilled. One can transform the ciphertext ¢ into another ciphertext ¢’ encoded under
any canonical p-encoding, possibly under a different p, by simply performing a PBS.

Property 4.3.1 (Reduction to a canonical encoding). Let £ be a valid p-encoding and &' a
canonical p'-encoding. We denote o/ = £'(0) and ' = £'(1). Let ¢ be a ciphertext encrypting
a bit b under €. Then, one can produce a ciphertext ¢’ encrypting the same bit b under £ by
applying a PBS on c. This PBS performs the function :

Caste g Zp — Zp’
o ifxe&(0)
x—= 6 ifre&(l)

1 otherwise.

Here, | simply denotes a placeholder value for a state that cannot be reached.

Our goal is to represent the Boolean function we want to evaluate with a sum of p-encodings
(we define what we mean by “sum of p-encoding” in Section 4.3.2). When sums are carried out
on ciphertexts (and so homomorphically on the underlying p-encodings), the sets £(0) and £(1)
of the p-encodings may move, grow, shrink, but they should never overlap as it would result in
a loss of information. As we removed the need for a bit of padding, we do not need to track
a potential overflow of data (informally we say that ciphertexts are free to “loop around the
torus”). After the sum, the encoding of the result can be reset to a canonical one with a PBS
to allow further computation. Or, if the homomorphic computation is over, the result can be
recovered by decrypting the ciphertext and checking in which partition the decrypted value lies.

The next subsection explains in further details the process of evaluating Boolean functions
on with p-encodings.

34

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

4.3.2 A New Strategy for Homomorphic Boolean Evaluation

In the following, we consider two Boolean variables x and y and their two respective encodings
over Zy:

0— {a A 0— {co e
= { {az}OSZSlo {O‘z}OSzglo (4'2)

1= {Bito<i<u, 1= {Bito<i<y,

Let f be a bivariate Boolean function and let us construct two sets Py and P; such that:

and &, = {

Py ={ly+3]p| (7,0) € Exlbs) x E(by) and f(by,by,) = b with (by,b,) €B*}VbeB. (4.3)

We say that the sum of p-encodings &, + &, is suitable for the evaluation of f if and only if
Po NPy = 0. The definition can be generalized to any number of arguments ¢ for f. For a given
f, finding such correct encodings is not trivial. We elaborate further on this point in Section
4.4.

If & and &, are suitable for f, then one can use the computed sets Py and P; to construct

a new p-encoding
0— P,
& = 0
1—=P

that encodes the bit f(x,y). As &, is valid, then the clear value of the bit can be recovered by
decryption, or further computations can be performed without the need of a bootstrapping.

Definition 4.3.3 (Application of a function to a vector of encodings). Let f : B’ — B be a
Boolean function and let £ = (&1, ...,&) be a vector of p-encodings. We define f(&) by:

0= Py
f(g)_{lHP1

with:
V4

l
Py — {[Z%] | (1s-- o) € [[&(bi) and f(br,...,0) = b}Vb cB

i=1
f(€) always exists, but is valid only if it respects the constraints of Definition 4.1.

Let us illustrate the latter definition on two toy example. We consider the two Boolean
operators & and @. The p-encoding resulting of the function f : (z,y) — = & y is:

00— {ai —+ a;‘}ogiﬁlo @] {Oéi + B;}Ogiﬁlo U {Oé; + ﬁj}OSZSlf)
£ — 0<j<l) 0<j<ly 0<j<h (4.4)

L= {Bi + Bj}o<i<i,
0<j<l]

and the p-encoding resulting of the operation f : (z,y) — x @y is:

0 = {ai + ajto<ic<iy U{Bi + Bjto<i<

0<j<li! i
Ep = e O<i<h (4.5)
1= {a; + B ro<i<iy U{a; + Bjto<i<iy
0<5<l] 0<j<h

Figure 4.2 further illustrates this construction for these two operations.
To wrap up, here is our proposed framework to evaluate a Boolean function f : B¢ — B
given a vector of suitable p-encodings £ = (&1,...,&):

1. Encrypt each input b; with some canonical p-encoding &; into a ciphertext ¢; such that
Esum = f(&1,...,&) is a valid encoding.

35

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

Figure 4.2: Starting from two canonical encodings, we produce two new p-encodings corresponding to the
results of the AND and the XOR operations.

2. For a Boolean function f to be evaluated on by, ..., by, compute homomorphically the sum
of the ciphertexts ¢ = ¢1 + - - -+ c¢y. This yields an encryption of b = f(by,...,by), encoded
with a valid p-encoding Esum = f(&1,...,&).

3. (a) If the result is directly required by the client, c is returned as ciphertext which can
be decrypted to get the result in Z, and associated to the right Boolean value.
(b) If the result is reused in further homomorphic computations, a PBS calculating
Caste,,,sEm, ON the result is computed (like introduced in Property 4.3.1), with
Enew & new canonical p-encoding. The resulting value can then be used as an input
for a next Boolean function.

Let us formalize this process by defining the notion of gadget associated to a Boolean function
I
Definition 4.3.4 (Gadget). Let f be a Boolean function of arity ¢. A gadget associated to f
is an homomorphic operator defined by a tuple I' = (Ein = (Si(i), e ,Si(ﬁ)), Eout, Pins pout> such
that:

o All the elements of &, are p;,-encodings, and £, is a canonical py,:-encoding.

e The encoding &gy, = f(8(1) e ,5“)) is a valid encoding.

n in

Applying a gadget to ciphertexts cq,...,cy, that encrypt the bits by,...,bs, produces a new
ciphertext ¢’ encrypting the bit f(b1,...,by) under the pyyt-encoding Eyye. To do so, we perform
the following algorithm:

o Constructing an intermediate ciphertext cjpter = Zle ¢; using the homomorphic sum of
TFHE. This ciphertext encrypts f(b1,...,bs) under the p;,-encoding f(&1,...,&).

¢ Reducing the encoding of ¢;pter from E;pier to Eour by applying a PBS on c;pie performing
the function Castg,,,, . This produces the expected result c’.

out

36

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

The advantage of this construction is that only one PBS is performed to apply the function.
Moreover, depending on the function, the input size of the PBS lookup table might be much
smaller than the arity of the function. Gadgets can be seen as a way to compress several Boolean
operators into a single evaluation of univariate look-up table. Of course, for a given p;, and a
given f, such a gadget may not exist. In such a case, two solutions can be considered:

« Increasing the value of p;, (e.g. taking p;, > 2¢ always works, but is very inefficient).
« Splitting the function into a graph of subfunctions, and evaluating each one with a gadget.

The question of constructing valid gadgets for a given f is treated in Section 4.4. The
question of efficiently splitting a function is treated in Section 4.5.

Example: We illustrate our approach with a simple working example: let f be a basic multi-
plexing function, such that
aifc=1

fla,b,¢) = {bifc:O

Instead of leveraging its Boolean representation f(a,b,c) = a&c @ b&¢, which would cost 3 PBS
with the approach of [Chi+20], our strategy consists in constructing a gadget and apply it to
the inputs a, b and ¢, which takes only one PBS. Here is the step-by-step procedure:

1. Encrypting the bits with the 7-encodings:

P 0+~ {0} and £ — 0+~ {0}
T T e (1 ‘Tl {2)

2. Applying the function f on the 7-encodings by summing the ciphertexts, producing a valid
7-encoding;:

A 0+ {0,1,2,5}
1 e {3,4,6)

3. With one PBS, resetting the result to a target canonical p-encoding (with any p), for
example

Enew = 0+ {0} withp=7
1— {1}

A visualization of this procedure can be found in Figure 4.3. We just defined the gadget
F = ((5117 gb: gc), gneu), 7, 7)

4.3.3 Encoding Switching

To apply a gadget to a given ciphertext, it has to be encrypted under the right encoding. Thus,
we need a method to homomorphically switch the encoding of a ciphertext. This allows as well
to plug the output of any gadget on the input of any other one, and so to evaluate a chain
of gadgets as long as we want. In the following, we explore different possibilities of encoding
switching. Let us begin with some trivial cases:

37

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

PBS

Figure 4.8: Illustration of an execution of the framework for the multiplexing function.

Property 4.3.2 (Encoding switching with a sum by a constant). Let ¢ be a ciphertext encoded
0 = {aito<i<iy

and a € Zy, a constant. The encoding of ¢ can be switched to:
L= {Bi}o<i<ty

under £ = {

& — {0 = {lei + al, bo<i<io
1= {[Bi + a, bo<i<i,

by an homomorphic addition of the ciphertext x and the clear value a.

Proof. All the elements of £'(0) (resp. &£'(1)) are offset by exactly a from their counterparts
in £(0) (resp. £(1)). Thus, if the original encoding £ was valid, then £(0) N E(1) = 0. So we
trivially get £'(0) N E'(1) = 0 and thus the validity of &’. O

Property 4.3.3 (Encoding switching with multiplication by a constant). Let ¢ be a ciphertext
0 = {aito<i<iy

1 {Bito<i<i,
encoding of ¢ can be switched to:

encoded under £ = {

and a € Z, a constant value coprime with p. The

o {0 = {la - ailp}o<i<iy
1= {[a- Bilpto<i<n

by an homomorphic multiplication of the ciphertext c by the clear value a.

Proof. As a is coprime with p, the multiplication by a is a bijection from Z, to Z,. By definition,
all the «;’s are different of the §;’s. If we apply a bijection on them, the inequalities are
conserved. 0

Note that the condition of coprimality between a and p is a sufficient condition for the
multiplication to be a valid encoding switching, but is not necessary. In particular, one other
case is particularly useful in practice:

38

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

Property 4.3.4 (Encoding switching for a canonical encoding containing a zero). Let ¢ be a
0+~ {0}

and let a € Z 0}. Then, it can be
N p\{0)

ciphertext encoded under the p-encoding: € = {

0+— {0}
1+ {a}
and the clear value a. This holds as well if £(0) and E(1) swapped.

switched to: &' = { by a simple homomorphic multiplication between the ciphertext c

Proof. The property is trivial by the linear homomorphism of the TFHE scheme. O

These techniques are powerful because they do not require any bootstrapping, so they can
be considered as free in terms of performances. However, any valid p-encoding can be turned
into any other one with a programmable bootstrapping, even with a different modulus p. A
reduced version of this is given by Property 4.3.1, but it can be extended to any valid output
p-encoding.

Property 4.3.5 (Arbitrary encoding switching with a PBS). Let ¢ be a ciphertext encoded
under E. Its encoding can be switched to £ (even with a different modulus p') by applying a
PBS on c evaluating the function

Casteygr @ Ly Ly (4.6)
o €&(0) ifxze&(0)

v ell(l) ifxe&(l) (4.7)
1 otherwise.

L simply denotes an arbitrary placeholder value, as it will never be reached.

Note for p = 2 : The case p = 2 is particular: we can observe that valid 2-encodings
are automatically negacyclic. Moreover, they allow to evaluate the XOR operation by simply
performing an homomorphic sum (so without bootstrapping). So it might be efficient to switch
between 2-encodings for XOR operations and p-encodings (with odd p) for non-linear Boolean
functions. We make use of this strategy in our implementation of the Keccak permutation in
Section 4.7.3 and for the AES in Section 4.7.5.

4.4 Algorithms of Construction of Gadgets

Let f : B! — B a Boolean function with ¢ entries. This section addresses the problem of
constructing a gadget for f. To do so, we pick a value for p and we search a vector of ¢
p-encodings &, suitable for f.

4.4.1 Reduction of the Search Space

While exhaustive search is a first option, it quickly becomes impractical due to the explosion
of the number of possibilities as p grows. As a consequence, a reduction of the search space is
needed without leaving out a potential solution.

We introduce two lemmas that will be used to reduce the search space:

Lemma 4.4.1 (Reducibility to singletons). Let f : B — B and let (€1, ...,&;) be a vector of p-

(@)
0~ {xj }léjgl((]i)

() . Then

encodings suitable for f and having the form: ¥ i € {1,...,0},& = {

39

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

. . , , _ , 0 {0}
any vector of canonical p-encodings (£1,...,&;) of the form: Vi e {1,...,4},& = 1 os)
— {y"

with %) € £(0) and y € &(1) is suitable for the function f as well.

Proof. Let us assume that the vector € = (&1,...,&) of Lemma 4.4.1 is suitable for the function
f- Then the sets Py and P; constructed like in Equation 4.3 are disjoint. Now, let us consider
the vector of canonical p-encodings &' = (&1, ..., &) respecting the property:

Vb eB,Vie{l,... 0} Eb)C ED).

As a consequence, if we build the sets P’y and P’y relative to the encodings £’, then we naturally
get P'o C Py and P’y C Py. So we get P'o NPy =0, proving Lemma 4.4.1. O

Lemma 4.4.2 (Reducibility to the singleton zero). Let f : B — B and let (€1, ..., &) be a vec-
0 {z®}
1= {y}
0+— {0}
1 {y(z‘) — x(i)}

tor of p-encodings suitable for f and of the form: Vi € {1,...,0},& = { Then any

vector of canonical p-encodings (€1, ..., &) of the form: Vi € {1,...,¢},& = {
is suitable for the function f as well.

Proof. Let f : B — B be a function and &£ be a vector of canonical p-encodings (&1, ..., &)
suitable for f with:

0~ {z}

1 {y@}

Let us build the sets Py and P; according to Equation 4.3. Each element of these sets is the

sum of exactly one element of each p-encoding, that is to say an element &;(0) U &;(1).
Let us pick an indice k € {1,..., ¢}, a value a € Z, and replace & in the vector £ by:

<l {O = {2 — a}

e 0 -a)

V’Le{l,,f},(‘%:{

L=

By using the Property 4.3.2, we directly have PN P; = 0 from Py NPy = O (by suitability
of the encodings for f).

By iterating this procedure on each of the ¢ elements of £, and by picking each time a = —z(®,
we prove Lemma 4.4.2.]

Using both Lemmas 4.4.1 and 4.4.2, we can restrict the search to the encodings of the form

e — 0~ {0}
e {ds}
with d; # 0 without any loss of generality.
Moreover, we restrict the solution further: we only consider p-encodings with p odd and
prime. The choice of an odd p allows to free ourselves from the negacyclicity constraint. To

explain the constraint of primality, we introduce the following lemma, that allows to drastically
improve the performances of the search:

Lemma 4.4.3. Let p be a prime and f : B — B be a Boolean function and let € = (E1,...,&p)
0 {z}
1= {y@}
0 {la- 2]}
L {fa-y®,}

be p-encodings suitable for f with: Vi€ {1,... ¢}, & = { . For every a € Z, \ {0},

the vector of p-encodings &' = (&1,...,&)) with: & = { is suitable for f as

well.

40

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

Proof. This is an immediate consequence of Property 4.3.3.]

As a consequence, if p is prime (which we shall always choose in practice), any solution can
be turned into a solution with d; = 1 by simply multiplying all the p-encodings of the solution
by [dl_l]p. So we can fix d; = 1 without any loss of generality, reducing drastically the size of
the search space.

4.4.2 Formalization of the Search Problem

According to the lemmas from Section 4.4.1, we can reduce the problem of finding a vector
of p-encodings (&1,...,&) such that f(&,...,&) is valid to the problem of finding a vector
0+~ {0}
we describe an algorithm to find such a vector d.

We denote V the matrix of elements of B of shape 2¢ x ¢ gathering all the possible sequences
of entries for the function f:

d=(di,...,dy) such that dy =1, &; = { and f(&1,...,&) is valid. In the following,

o O O

00
0 1
10

1 ... 11
Also, we denote by b the vector of all the outputs of the function f, sorted in same order as

the rows of V. Thus, we have: Vi € {1,...,2¢},b; = f(V;) for V; the i-th row of V. Let us define
the vector r as: r = Vd. To make d a solution of the problem, r has to verify the following

property:
V(i,5) € {1,.... 2L FON) # F(V)) = ri#ry

An alternative formulation is: we look for two disjoint subsets Py and Py of Zjp, such that:
f(VZ) =b<r; €P.
The following section describes an algorithm finding a solution to this problem.

4.4.3 Algorithm

We start by constructing two sets F and 7 such that:
F={Vi|b;=0}and T ={V; | by =1}.

Each line V; represents a linear combination of the d;’s, that verifies:
y4
T, = ZVZJ . dj mod p.
§=0

The values r; produced by the elements of F must be different from the ones produced by 7.
As a consequence, we can write:

‘ ¢
V (Vi V) €FXT,Y Vie-di > Vik - d,
k=0 k=0
which is equivalent to writing:
¢
VY (Vi,V;) € FXT,Y (Vi — Vir) - di # 0.
k=0

41

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

So we can rewrite our constraints in the set C = {V; = V; | (V;,V;) € F x T }. C contains vectors
with coordinates in {0, 1, —1} representing linear combinations that have to be non-zero. Note
that if an element of the set C is the opposite of an other, it does not bring further constraint
and can thus be safely discarded from the set.

The use of a set in the implementation at this point of the algorithm allows to remove a lot
of duplicate constraints and to simplify the next step. Then, the problem reduces to solving a
“linear system of inequalities” in the ring Z,:

c§2)-d1+"'+01(2)‘d€750 mod p with Cz(j) € {0,£1}

After filtering the duplicates, we pack all the elements of C in ¢ matrices {C; }1<i<¢ (each row
being a linear combination), where the matrix C; packs all the constraints involving only the i
first inputs (i.e. all the coefficients of column index greater than i are zeros).

We then perform a recursive search (Algorithm 6), affecting at each step of depth i a possible
value d; for the i-th input. To do so, we call Algorithm 7 to construct the set of all possible
values complying with the constraints of the matrix C; and the previously set values for the
preceding inputs. If we reach a dead-end, we backtrack by deleting the previous input and
assigning it the next possible value. Algorithms 6 and 7 formalize this idea: Algorithm 6 is a
basic recursive backtracking algorithm using calls to the set construction function (Algorithm
7) to get the possibilities for the next value of d. The latter, when called at depth j+ 1, takes as
input the j values already computed at higher depth for d and the matrix of constraints C;1.
Each line of Cj;1 creates a (potentially duplicate) forbidden value for d;1, these values are all
computed and the complement of this set in Z, is returned by the algorithm (i.e. the set for
possible values for d;j1; at this point of the search).

Theorem 4.4.1. Running Algorithm 6 with increasing values of p ensures that the first solution
d found is optimal for the function f, i.e. the solution works and its associated p is the smallest
as possible.

Optimizations: Several optimizations are possible to improve the performances of the search.
First, in Algorithm 7, one can check the size of the set S at each iteration and stop as soon
as the size of the set is p. Such a set means that a dead-end has been reached and that no
value will be returned by the function. Then, one can leverage symmetries existing in the table
but also in the function. For example, if we consider the function f : (z,y) — = @y, the two
variables x and y have symmetric roles. Thus, if the pair of encodings (&, &,) is valid, then the
pair (&,,&;) is valid as well. As a consequence, one can arbitrarily set d, < d, and removing
half the possibilities for (z,y).

Development of an heuristic: This algorithm of the previous section is deterministic and
finds any existing set of encodings compliant with the function f for a given value of p. However,
the right value for p is not known a priori, so we have to run the full algorithm for each possible
value of p until we find one that works. For these reasons, we might prefer an efficient heuristic
over the previous algorithm in some contexts. In Section 4.4.5, we define such a heuristic which
allows to drastically improve the performance by executing directly the algorithm with realistic
values for p.

42

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

Algorithm 6 Recursive function search that adds an element to the vector d

d = (d;)1<i<j: vector of values already computed

Inout C={Ci|i€{0,...,£—1}}: pre-computed constraint matrices
nput:
p p € N*: modulus of the input encodings

¢ € N*: target number of encodings required

Result: d: a list of encodings such that f is evaluable

if j = ¢ then
‘ return d ; /* Base case: full solution found */
else
P < get_possible_values(d,Cji1,p) ; /* Compute possible values for dj */
for x € P do
d« (d|=z); /* Append = to current vector */
dyo) < search(d,C,p,?) ; /* Recursive call */
if dso; # L then
‘ return d,,; ; /* Propagate valid solution */
else
‘ d«d[:j+1]; /* Backtrack by removing x from the solution vector */
end
end
return | ; /* All possibilities failed */
end

Algorithm 7 Function get_possible_values that builds the set of possible values for the next
slot of d given the slots already filled in.

d:= (di){lgigj} :the set of values for the inputs already computed
Input: {C;;q :The matrix of constraints of this step, pre-computed

p € N*: the modulus of input encoding
Result: S : contains only values suitable for the j + 1-th slot of d.

S« {}; /* S is the set of forbidden values for d;;; */

for c€ Cj;1 do
¢+ (—=c[-1] - €[0], =c[-1] - [1],...) ; /* x/
C+Cufet e« cj+1]; /* We retrieve the (j+ 1)th coefficient of the

inequation c */
S+ Su {[—E- Ei’:l cr - dk} } ; /* We compute the value forbidden by c */
p
end
S« 7Z,\ S
return S

43

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

0 - Lo o] o 0o] o o 0
B e e
SRR - - o
R - o

100

MJ

o- 0 0 0 0 0 0 0 0 0 0 5] 0

Arity | of the function
5
1
=]
=]
=]

~- 0 0 0 0 0 0 0 0 0 0 0 0

w- 0 0 0 0 0 0 0 0 0 0 0 0

3 5 7 11 13 17 19 23 29 31 37 41 43
Modulus p

Figure 4.4: Rate of success of the algorithm for 100 random Boolean functions for different values of £
and p.

4.4.4 Performances Measurements

In this section, we present some experimental results to demonstrate the performances of the
algorithm. We ran Algorithm 6 for a lot of random Boolean functions of arity ¢. Two metrics
are particularly interesting for us:

e The running time of the algorithm, especially in the cases where there is no solution.
e The probability of success, for a random function

Figure 4.4 shows the rate of success for random Boolean functions of arity ¢ € {2,9} and for
prime values of p € [3,39]. It illustrates the intuitive idea that one has to increase p to evaluate
functions of bigger arity £. It also give a rough idea of the value of p required for a given function
of arity £.

Figure 4.5 shows the evolution of the time of execution of the algorithm for random Boolean
functions for which no solution exists. It shows the explosion of the complexity for high values
of p, and justifies the need of a more efficient algorithm for those function (we introduce one in
Section 4.5).

Lastly, Figure 4.6 shows how long it takes to find a solution when one exists, relatively to
the running time when no solution exist at all. It illustrates a form of "speed of convergence"
and shows that it is located around %

4.4.5 An Efficient Sieving Heuristic to Find Suitable Encodings

Let us consider a function f : B! — B of matrix of constraints C' = (C](Z))1<z<n and its associated
1<5<¢4
system of linear inequalities:

cgl)xdl—i—cgl)><d2+---—|—cé1)><d,g;é0 mod p
cgz)xd1+c§2)><d2+---+cé2)><dg7£0 mod p

44

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

101] 100 re—m——————————————————

10° 3 80 4

1073 60

g

== 100%

1072 3

Speed of Convergence

mean_timin

1073 3

1074 4

1075 3

(1, p)

5 10 15 20 25 30 35 4 45
p
Figure 4.6: Ratio between the time to

Figure 4.5: Running time of the algorithm for different ﬁnd a solution when it e:cis.ts with the
values of £ and p for random functions. Note that the time to run th'e Jull algorithm when
scale is logarithmic. no solution exists.

Figure 4.7: Some metrics about running time.

The principle is to sample random values in Z (with some large bound) and affect them to
the d;’s. If all the corresponding values for all the C; = Z§:1 cg-l) x d; are not divisible by a
value p, then the vector (d; modp | j € {1,...,£}) is a solution of the system of inequalities
generated by C.

To reduce the amount of samples required to find a solution, we want to avoid sampling
trivially wrong sets of d;’s. For example, if all the d;’s are themselves divisible by p, then the
C;’s will all be divisible as well. To tackle this problem, we perform the sampling across prime
numbers in Z.

Algorithm 8 Sample a solution d in Z for a function f and returns a possible value for p.

{Ci}1<i<n: The lines of the matrix of constraints C of the function f
Input: < P: The set of possible values for p to be tested

D: The set of possible values in Z to assign to the d;’s. (large primes)
Result: p such that it is possible to evaluate f using a modulus smaller or equal than p.

d&p ; /* Sample random prime values in Z */
r=Cxd; /* r is the right member of the system */
for pe P do
if 0 € [r], then
P+ P\ {p}; /* If this value of p divides one of the coordinates of r,
then it will not work */
end
if | P |> 0 then
‘ return min(P) ; /* Returns the smallest possible value for p, if any. */
return |

Running this algorithm several times and keeping the smallest returned value for p, one gets
an upper bound on the minimum p required to evaluate a function with our framework. Note
that, on the contrary of the deterministic search algorithm, this heuristic does not require a
prime p.

45

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

Number of outputs equals to p

Average number of sample before finding a solution for a given p

4000 4
25000 +

3000 4 20000

15000 4

count
avg_iter

2000 +

10000 1

1000 4 5000 4

. . T T T .
19 21 23 25 27 29 31
19 25

p

Figure 4.9: Number of iterations required to get a

Figure 4.8: The outputs of 10000 runs of the Algo- . .
solution for a given value of p

rithm 8 for the first subfunction of the Ascon S-box

Example: Let us consider the S-box of the block cipher ASCON. We study this S-box in more
details and provide an exact optimized solution for its homomorphic evaluation in Section 4.7.4.
Here, we apply Algorithm 8 on the five functions generating the five output bits and monitor
the results until we gather N = 10000 non-zero possible values for p.

The figure 4.8 shows the repartition of the returned values of p by the algorithm during these
N runs on the first subfunction. The optimal value of p found by the deterministic approach
of Section 4.4.3 is 17 so the upper bound 19 is pretty close, despite being rarely found by the
algorithm. Also, the figure 4.9 shows 21 (the second best solution found by the sieving) is almost
instantly found by the algorithm.

In the process of finding the smallest p possible and a correct vector of p-encoding to evaluate
a function f, this heuristic is really efficient to get a tight upper bound on the value of p.

4.5 Scaling our Approach to any Boolean Circuit

Our framework optimizes the homomorphic evaluation of single Boolean functions but suffers
the following limitations:

1. For a Boolean function with a high number of inputs, the search algorithm may be very
time-consuming.

2. Some functions simply do not have any solution for acceptable values for p (p < 32 for
example) and thus are not efficiently evaluable in a single PBS.?

As a consequence, we need a solution to extend our framework to these cases. In this section,
we propose a strategy to leverage the circuit representation of a “tough” function f to find a
strategy of homomorphic evaluation with as few bootstrappings as possible.

4.5.1 Graph of Subcircuits

Let f : B — B be a Boolean function, and let F be a Boolean circuit representing f (some
preliminaries about Boolean circuits can be found in Section 4.1). Let us describe the layout of
the circuit F. It has £ input wires, denoted by {y;}1<j<¢, and the output wire is denoted by z.
The intermediary wires are denoted by {t;}1<j<¢. The Boolean operation gates are of fan-out
1.

2The PBS can be evaluated for larger values of p but it quickly becomes inefficient as p grows.

46

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

Y1y2Yy3 Y4 Ys Y6 Y7 ."Jf Y 2 Ys ' Y-) :.'j_,(l.-

F1 Jo

~
A ~

Figure 4.10: Example of graph of subcircuits (on left) and of a valid subcircuit (on right). Fach subcircuit
Fi is evaluated homomorphically with a gadget T';.

Our goal is to split the circuit into a directed acyclic graph G, whose vertexes are subcircuits
{Fi,..., Fr} and whose edges connect the outputs of a subcircuit with the input of another.
Each subcircuit F; represents a subfunction f; : B4 — B that is evaluable with a gadget with
our framework.

We use the same notations to refer to the elements of a sub01rcu1t F; and we index them
with i. The output of F; is denoted by z(and its inputs by {yj }<j<e and so on.

The graph is valid for f with respect to modulus p if the following properties are satisfied:

o Each subcircuit F; has only one output z(®.

e For a subcircuit F;, all its inputs are either inputs of the whole circuit or outputs of other
subcircuits of the graph. We can write this property as:

(v hes<n © ({whsice U 19 hg)

Thus, the indexing of the F;’s respects the topological order of the graph, i.e. no gates of
Fi has a child in any of the F;, with j <.

o All the Boolean functions f; represented by the subcircuits F; are evaluable in a single
bootstrapping with modulus p with our proposed method.

o The last subcircuit F,. of the graph has z (the output of the main circuit) for output:
(c) —
2\¢ = 2.

To homomorphically evaluate the function f, we evaluate each subcircuits with one boot-
strapping for each of them and get the final result. In order to reduce the cost of evaluation
for a given p, the goal is hence to find the smallest valid graph possible in terms of number
of subcircuits. Taking a greater value of p produces a different graph that may be smaller (as
subcircuits might be larger), but the timings of bootstrapping in this graph might on the other
hand be greater. One can therefore run the search for different values of p and keep the most
efficient setup among the possible graphs.

47

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

4.5.2 Heuristics to Find a Small Graph

Finding such a graph can be done by exhaustively evaluating all the possible subcircuits with
our method introduced in Section 4.4, and then find the more efficient one. However it is not
really practical to evaluate all the possible subcircuits, so we develop some heuristics to reduce
the search space. Let us start by defining a few bounds on the considered subcircuits, we will
leave the other ones apart in our algorithm:

o The subcircuits have at most B inputs (v, 1) < B). The purpose of this bound is to limit
the running time of Algorithm 6. In practice, for our experiments, we took B = 10.

e The subcircuits are evaluable with one single bootstrapping with a maximum value pj,q.
This value ensures a bootstrapping with a reasonable timing. If the search algorithm fails
for Paz, the subcircuit is dropped without trying to extend p. In our experiment, we took
Pmazx = 31.

In order to decompose our Boolean circuit into a graph satisfying the above property for a
modulus p, we would want to exhaustively search all the subcircuits of F compliant with the
bounds we introduced earlier. However, all subcircuits are not equally worth to evaluate. In
particular a wire incoming a copy gate is particularly worth evaluating because is costs one
bootstrapping but produce several inputs for the next subcircuits.

We gather wires that precede a copy gate in the set Z. We add to this set the global output
z. We also gather the input wires of the global circuit F in the set). We define the notion of
atomic subcircuit that is a valid subcircuit whose all inputs belong to Y U Z and whose output
belongs to Z. Note that the merge of two atomic subcircuits that respect the global circuit
wiring is also an atomic subcircuit.

Our heuristic works as follows:

1. For each of these outputs z; € Z, we exhaustively construct a set .7-"; that gathers all the
atomic subcircuits whose output is z;. We then filter out the subcircuits of F, that do
not comply with the bounds introduced at the beginning of the section or that are not
evaluable with a gadget with the input modulus p (we use Algorithm 6 to decide that).

2. Now we want to construct the smallest valid graph evaluating F using subcircuits from the
ﬁ; ’s. While finding the smallest graph is hard, constructing any valid graph is easy. As a
consequence, our strategy to find a small graph is to randomly create a lot of valid graphs
and to take the smallest one. The procedure to create a valid graph is the following: we
start from the output z and we randomly draw a subcircuit F, from .fz The inputs of
F. can be sorted into two categories: the ones belonging to)V and the ones belonging to
Z. For each one of ‘these latter wires w € Z, we repeat the procedure, i.e. we draw a
subcircuit F,, from F,,, and so on. When we have reached all the input wires of F, we
get a valid graph G . This second step is run a large amount of times (the number of
trials is a parameter of the method), and the smallest graph, i.e. the one with the fewest
subcircuits, is returned.

We carried on this method on the S-box of AES in Section 4.7.5.

4.5.3 Parallelization of the Execution of the Graph

Once we have our graph G, we can identify its ng layers. Formally, they are defined as:

Definition 4.5.1. A layer £ of a graph G is a set of subcircuit {F,,...,F,} of G that verifies:
VFi, F; € L, F; is not an ancestor node of F;.

48

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

By construction, all the subcircuits belonging to the same layer can be evaluated in parallel.
This reduces the number of bootstrapping steps from k (the number of subcircuits in the graph
G) to ng (the number of layers). Our graph-finding heuristic can be tweaked to select the
graph with minimum number of layers instead of minimum number of subcircuits to optimize
parallelization.

4.6 Implementation Considerations: Adaptation of the Param-
eters Selection and of the tfhe-rs Library

From a high level point of view, our technique can be seen as adding an additional layer of
abstraction on top of TFHE. It remains to explain how to select the parameters for the TFHE
scheme. Moreover, to implemented our framework, we had to fork the tfhe-rs library [Zam22c].
The following section covers these two issues.

4.6.1 Crafting of Parameters

In practical setting, we need a set of parameters for TFHE. Finding an optimal set of parameters
for a given application is a hard problem, that we study in depth in Chapter 8. This work being
anterior to the one of Chapter 8, we used the framework of [Chi+21] and implemented in
[Zam22a].

In this paper, the authors elaborate a strategy where they define an atomic pattern of FHE
operators, that is to say a subgraph of FHE operators in which the noise of the output is inde-
pendent from the one in the inputs. Then, they develop an optimization framework to derive
the best set of parameters for a given atomic pattern. In particular, the first atomic pattern
they study, that they denote by AC7P21) g a subgraph composed of a linear combination
of ciphertexts with clear constants, then a Keyswitch and then a BlindRotate followed by a
SampleExtract (ModulusSwitch is seen as a part of BlindRotate). To dimension the param-
eters of TFHE to evaluate such an atomic pattern, their framework takes as input the 2-norm
of the vector of constants of the linear combination (denoted by v) and a noise bound ¢ on the
standard deviation of the distribution of error in a ciphertext that ensures a correct decryption
with a good probability (1 —€). We elaborate further on how this bound is constructed be-
low in this section. If we look closely, the evaluation of a gadget we introduced in Definition
4.3.4 can be seen as a AC7FP2) with a few differences. Thus, we slightly modified the tool
concrete-optimizer [Zam?22a), that allows to generate parameters for different types of atomic
patterns, to support our gadget as a new atomic pattern. Let us dive into the differences between
a gadget and a AC7/P2);

Support of odd values for p: Using an odd value for p changes the bootstrapping procedure,
and in particular the definition of the accumulator for the BLindRotate (as explained in Chapter
3). With our construction, the windows in the polynomial are half the size of the ones for an
even p, which impacts the noise bound ¢. As this bound depends of the failure probability « that

the user is ready to tolerate, we shall denote it t, hereafter, which satisfies: ¢, = — A

22 (1— N/1—a)
where 2* is the standard score and A is the scaling factor (see [Chi+21] for more explanations).
The impact of our adaptation on this formula is solely with respect to the scaling factor. In the
context of an AC/P2D) we have A = ﬁ with 7 the number of MSB for padding. As explained
in Chapter 3, we do not need any padding mechanism anymore, so the 2™ vanishes. However,
the length of a window is divided by 2, and p does not divide ¢ anymore so we need to add a

rounding. We finally get A = {%W.

49

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

Link between input encodings and v: In a scenario where only one gadget has to be
evaluated, its inputs are freshly encrypted ciphertexts. Then, there is no need to perform any
encoding switching before evaluating the gadget, and so we are in the context of a AC7P2D) with
v = 1. However, if we are in a context of a graph of gadgets like in Section 4.5, the output of a
gadget can be used as input of subsequent gadgets under different encodings. In this case, some
encoding switchings are necessary. If these encoding switching are made using a mutiplication by
a constant (Property 4.3.3), we are still in the context of a A2 but with v # 1. To formalize
that, we first recall that Algorithm 6 produces gadgets of the form I' = (&in, Eout, Pin, Pouts f),

; 0— {0
with &9 = {0} . Thus, if we fix that all gadget output ciphertexts are encoded under
m 11— {dl}

010
Eout = {1 }11 , then the encoding switchings needed before an evaluation of I' corresponds
—

to a linear combination of the inputs with the vector d = (d; | 7 € [1,/]), so we fall back on a
ACTP2Y) with v = ||d].

We implemented these changes in concrete-optimizer and uses it to generate sets of pa-
rameters for our implementations detailed in Section 4.7.

4.6.2 Concrete Implementations of p-Encodings and Homomorphic Functions
in tfhe-rs

To implement our framework, we relied on the tfhe-rs library [Zam22c|. Here is a list of the
major changes we applied to the code:

Addition of the notion of p-encoding: An encoding £ is simply implemented with a
structure Encoding storing two HashSets and the modulus p. The HashSets represent both
sets £(0) and £(1). When creating an Encoding, the code checks whether the two underlying
sets are disjoint or not. Moreover, the operation of encryption and decryption are modified as
well. The signatures change from:

encrypt(Boolean, ClientKey) -> Ciphertext

to:
encrypt (Boolean, ClientKey, Encoding) -> Ciphertext

(same for decrypt). The functions also perform the mapping B +— Z, before encryption and

the other way around after decryption.

Support of odd moduli: The native tfhe-rs only support power-of-two-moduli p. We
extended the library to handle odd values for p. This required modifying the encryption and
decryption algorithm, and to compute the sets of parameters with the method of Section 4.6.1.

Definition of the new structure Gadget: According to the evaluation strategy we in-
troduced in Section 4.3.2, we wrote a new structure Gadget, associated to a Boolean function
f : Bf — B, carrying:

o A list of the Encoding objects for the inputs: &, = (&1,...,&), with the input modulus
pin they encoded on.

e The output Encoding object &yyt, with the output modulus pey: it is encoded on.

e The clear function f.

20

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

When such a structure is constructed, it self-checks whether f(&;,) is valid. Then, when provided
¢ Ciphertexts objects encoded under their respective p-encoding, it executes the homomorphic
sum and the PBS and outputs the results encoded under &,,:. Some utilitary functions per-
forming encoding-switching are also available, allowing the chaining of several Gadget.

Implementation of the accumulator: The procedure of bootstrapping of tfhe-rs is
slightly modified to support the new version of the accumulator we introduced in Chapter 3.

Parsing of graphs: We implemented a Python script that produces graphs to represent
more complex functions that requires several PBS, as described in Section 4.5. These graphs are
stored with a comprehensive file format and our Rust implementation has a module of parsing
allowing to load these graphs and automatically generate the corresponding graph of Gadget.

4.7 Application to Cryptographic Primitives

In this section, we apply our approach on some cryptographic primitives. For each primitive,
we first explain the construction of the gadgets required and report the concrete performances
of our implementation. We detailed all the timings of our experimentations along with the sets
of parameters we used in Section 4.7.6.

For performance measurement, we implemented our framework in our fork of the library
tfhe-rs [Zam22c| adapted as discussed in Section 4.6 and we generated the sets of parameters
thank to our version of concrete-optimizer [Zam22a]. By default, we tailored the sets of
parameters to limit the probability of failure € of a bootstrapping to 274, and a security level
of A = 128 bits. All experiments have been carried out on a laptop with a 12th Gen Intel(R)
Core(TM) i5-1245U CPU with 10 cores and a frequency of 4.4 GHz, and 16 GB of RAM.

4.7.1 SIMON Block Cipher

SIMON is a hardware-oriented block cipher developed in [Bea+15], which relies only on the
following operations: AND, rotation, XOR. It is a classical Feistel network for which the Feistel
function consists in applying basic operations on the branch, xoring the subkey and then xoring
the result with the other branch as depicted in the Figure 4.11 (on this figure, S* denotes the left
circular shift by 4 bits.). We use one ciphertext per bit so the rotation operation is essentially
free. Note that the key is considered as a plaintext, which does not change anything in the
framework. In our implementation, we considered a (128-128) instance of SIMON (i.e. the
whole state and the key are of size 128).
The Boolean function to evaluate can be defined as

f(bo,bl,bg,bg,b4) =by-b1 Dby Dbs Dby .

Using Algorithm 6, we found the smallest possible p (p = 9) and the following 9-encodings
to evaluate each bit of the Feistel function with one single bootstrapping (i.e. totalling 64 PBS
per round).

0 {0 0 {0
PP La gl TR L L SN
1 {1} 1 {2}

The sum of these p-encodings yields the output encoding:

0+—40,1,4,5,8 .
Eout = { { } with p=9

1+—1{2,3,6,7}

51

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

Ty Yi
3
D ki

—

Ti+1 Yi+1

Figure 4.11: One Feistel round of SIMON.

which is valid for f. After the PBS, all the bits of the state are encrypted under the encoding
&y. We formalize that with the gadget I' = ((&y, &1, &2, E3,E4),&0,9,9)

To perform a Feistel round on a state of size k, the gadget I' is applied in parallel k/2 times.
Note that one bit may be used in several evaluation as by, by and by. So we sometimes have to
switch from & to & by a simple external multiplication by 2, which is negligible in terms of
performances.

Using our version of concrete-optimizer [Zam22a|, we crafted a set of parameters suitable
for this modulus and these encodings. On our machine, one PBS with such parameters takes
about 9.5 ms. The theoretical timings achieved on one full block without any parallelization is
41 seconds (68 rounds X 64 bits x 9.5 ms) which we confirmed experimentally.

Nonetheless, this setting is intrinsically parallelizable: the 64 gadgets of each round can be
performed in parallel. We implemented parallelization using the module Rayon of Rust, which
made the total timings drop to 13 seconds on our machine.

Compared to [Ben+22| that implemented the same block cipher on an equivalent hardware
with parallelism, our implementation is about 10 times faster. Table 4.6 shows the comparison.
Note that in this paper, the probability of failure is not specified. As ours is pretty conservative,
this is a good argument in favor of our framework.

4.7.2 The Trivium Stream Cipher

Trivium [De 06] is a stream cipher that uses a circular state. At each round, the bits are rotated
within the state, except for three of them that are refreshed using the Boolean function of
Section 4.7.1. The outer stream is generated by xoring three bits of the state each round once
a “warming-up” phase is achieved.

For each generated key bit, it requires performing this function three times and aggregating
five XOR operations in the center. Our strategy is to evaluate the refreshing function three times
per round with one PBS for each of them, then get the result in Zs and chain the five XOR
operations to get the output. Figure 4.12 illustrates the layout of the cipher.

In [BOS23], the authors implement Trivium using the original tfhe-rs library, with 2 bits
of message and 2 bits of carry for a total of 4 significative bits out of the 32 of a ciphertext
component. They call this mode the shortint mode. The use-case they target is transciphering.

To compare our implementation with the one of [BOS23], timings are not a good metric
as in their work they are provided on a massive AWS instance with a significant amount of
parallelism. A better metric is to count the number of PBS and compare the parameter sets.

We reproduced the PBS operation with their parameter set on our machine and then simply
estimated the timings of one round of Trivium with their approach with no parallelism. The

52

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

Figure 4.12: The trivium stream cipher. Figure extracted from [De 06]

results are summed up in Table 4.1. Note that in our implementation we do not refresh the
output bits with a PBS after the chain of XOR, because in the use-case of transciphering one
more XOR has to be performed with the message. We take advantage of this and move the last
PBS into the transciphering phase.

Table 4.1: Comparison of timings of one round of Trivium between our work and [BOS23], with ¢ = 2740,

Instance | Timing PBS | Number of PBS per round | Estimated timings
[BOS23| 6.6 7 46.2 ms
Our work 9.5 3 28.5 ms

4.7.3 Keccak Permutation

Keccak is a hash function standardized by NIST under the name SHA-8 [NIS15]. It is a sponge
function, whose transformation is called the Keccak permutation. It consists of five sub-functions:
0, p, ™, x, and ¢.

Let us recall that our approach encrypts each bit in one TFHE ciphertext. Let us explain
the stategies of homomorphization of these sub-functions:

e p and 7 simply reorder the bits within the state, so they are not impacted by the homo-
morphization.

e 0 is just a serie of XOR operations, so it can be performed with a serie of homomorphic
additions and without any PBS provided that the input ciphertexts are defined over Z,
with p = 2.

e x is the only non-linear function of the permutation, and has to be performed with a PBS.
It is the transformation that applies the function defined by

Ix(a,b,¢c) =a®cdb&c

to get each bit of the output state.

53

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

e Finally, ¢+ performs a simple xor with a constant, so it can be handled in a similar manner
that 6. The difference is that the constant is in clear this time.

The p-encodings we use are:

0 1
o &y = {1 ~ J{LQ{ with pg, = 3 to evaluate the & operator in the alternative formula of .
—

with pg = 2 for the other operations of @.

_ Jo— {0}
EEB_{IH{I}

Our strategy of homomorphic evaluation of the Keccak permutation is as follows:
1. Encrypt the input state under the encoding &g .

2. Evaluate the subfuctions 6, p, and w. Theses functions being purely linear, they can be
performed only with sums under &g.

3. Change the encoding from Eg to £ with one PBS per bit of the state (Property 4.3.5).

4. Evaluate the AND operator of the subfunction y with the gadget
F& = ((5&7 g&)a 5€B> 37 2)
associated to function fg, : (z,y) — x&y. This gadget is applied once per bit of the state.

5. Evaluate the remaining @ operators of x and the ¢ subfunctions, then jump back Step 2.
for the next loop iteration.

Casting a ciphertext from &g to & (Step 3) is a bit tricky because pg = 2 is even. Because
of the negacyclicity problem, one needs £ (0) = [~ (1)],, . With pg = 3, the only candidate
is the encoding &, defined above.

As a result, each round takes two programmable bootstrappings per bit. An implementation
with our tweaked version of tfhe-rs takes 16.5 seconds (without any parallelism) on our hard-
ware to perform one Keccak round on a state of 1600 bits in spite of the two PBS required per
round and per bit. Those timings are possible because of the small values of p allowing the use
of a set of small parameters, which speeds up the computation. A full run of Keccak counting
24 rounds, we can then estimate the timings without parallelism to 6.6 minutes. For the sake
of simplicity, we use the same set of parameters for both types of PBS, avoiding the hassle of
using two different server keys.

This strategy of implementation complies with the more generic one that we introduce in
Section 4.7.4 and that is illustrated on Figure 4.14. It suits very well the use-cases where linear
and non-linear operations are alternating.

4.7.4 Ascon

Ascon [Dob+21; Dob+19] is a lightweight block cipher algorithm that was designed to provide
efficient and secure encryption and authentication for a wide range of applications, particularly
in resource-constrained environments such as embedded systems and IoT devices. The name
“Ascon” stands for “Authenticated encryption for Small Constrained Devices”. We implemented
its S-box, whose circuit is represented on Figure 4.13.

This layout is a bit different from the others: the S-box takes five bits as input and outputs
five bits. We denote fo,..., f4 the five functions of B> — B that generate the 5 output bits
xo, ..., 24. Thus, we need to define five gadgets (one per function).

o4

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS
X0 =(A) ¥ D =(“) > X0
1>€}>@\ v
X1 ¥ e aar, > X1
' 1»@»@{
X2 —b- A =?= X
1"6 / / 1
x3 vy '@ =<> > x3
v | 1o /‘
X4 —rH1+—5—2 4D >~ X4
1o

Figure 4.13: The 5-bits look-up table of ASCON. Figure extracted from [Dob+21]

) S-Box Linear
layer layer
Encoding Gadgets Sums
switching p prime p=2
A

Figure 4.14: A common layout to evaluate cryptographic primitives. The upper part of the bozes represents
what happens in the clear, while the lower part shows the encrypted operations.

These functions, once analyzed by the algorithm, can be computed in one single bootstrap-
ping each, but for different values of p (respectively p = 17,7,7,15,11 that are the smallest
possible values). We could implement the gadgets I'g, ...,y (associated to foy,..., fi1) with dif-
ferent values for p;,, but this would imply to introduce some encoding switchings before each
round of hashing. To keep things simpler we generated only encodings with p = 17, making the
implementation more straightforward as no encoding switching is required. For each subfunction
fi, five canonical 17-encodings (&, ..., & 4) of form

{

are computed. The results are displayed in the Table 4.2. Note the zero values in some cases,
they show that the variable is not used in the subfunction.

The S-box layer is followed by a linear layer, where the bits of the states are shifted and
combined with XOR operations. This can be trivially done with p = 2. Finally, to prepare the
next round, an encoding switching is performed to send back the ciphertexts on 17-encodings.
This is summed up in Figure 4.14. Note that there is no encoding switching from non-linear layer
0~ {0}
1— {1}

0~ {0}
1= {di,j}

i7j -

to linear layer because the gadgets can directly outputs ciphertexts under £ = {

with p = 2.

To wrap up, we construct the five gadgets I'; = ((&i0,-..,&i4), e, 17,2, f;). They will carry
the evaluation of the S-boxes and output ciphertexts encrypted under ;. Then, the linear layer
is trivially evaluated with homomorphic sums. An encoding switching from &g to &; ; allows to
come back to non-linear operations.

Using this solution, the S-box is evaluated in 92 ms. Note that the 5 different PBS described
in Table 4.2 have different norms of vector d so they may have a different set of parameters for
each. We use the more restrictive one (i.e. the one with greater ||v||) for the 5. Estimating the

95

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

subfunction di,g di71 di72 di,g di74
fo 1 | 237 14
fi 1 [227214
f 1 2211470
s 1 [1] 5] 5 | 3
1 1 [20 43

Table 4.2: Parameters d; ; for Ascon, with p = 17 for every subfunction.

timings of a full run of Ascon is not trivial because it depends a lot of the parameters. To give a
rough idea, in hashing mode, 64 S-boxes are required per round, with 12 rounds recommended.
The outputs of the S-boxes are in Zs to allow the evaluation of the linear layer of Ascon. At the
end of this linear layer, the encoding of each of the 320 bits of the state must be switched back
to Z17 with a PBS. To do so, we use the same set of parameters as for the encoding switching
in Step 3 of the Keccak evaluation in Section 4.7.3.

This gives an estimation of 89 seconds for one Ascon hash.

4.7.5 AES

AES [DRO00], or Advanced Encryption Standard, stands as one of the most widely used and
trusted encryption algorithms in the world of computer security. Its standardization occured in
2001 when it was adopted by NIST to replace the obsolete DES (Data Encryption Standard).
Implementing this primitive in FHE is known as particularly tricky and only few attempts have
been made [GHS12|, [CLT14], [Tra+23].

A round of AES can be decomposed into 4 steps:

1. SubBytes: a non-linear substitution step where each byte is replaced by another according
to a lookup table. This step concentrates all the challenge for homomorphization, the
other one being trivial with our framework.

2. ShiftRows: a transposition step where the last three rows of the state are shifted cyclically
a certain number of times. As our framework encrypts each bit in a distinct ciphertext,
this step is for free.

3. MixColumns: a linear mixing operation which operates on the columns of the state, com-
bining the four bytes in each column. This step can be implemented using only XOR
operations and bit-shiftings. The former are trivial with our framework using p = 2 and
the latter are for free as the ones in the previous step.

4. AddRoundKey: each byte of the state is combined with a byte of the key from the key
schedule using a X0R. Still using p = 2, this can be carried out easily.

We refer to Section 5.2 for a more in-depth presentation of the algorithm.

The S-box of SubBytes takes 8 bits in input and yields 8 bits of output. It is defined by
two substeps: an inversion in GF(2%) followed by an affine transformation. While the latter is
trivial to compute with TFHE, the former is much trickier and thus we did not take advantage
of this representation. Using our framework, the obvious-looking solution is to split the full
S-box B® — B® into 8 subfunctions fy,..., fr : B® — B. We could then give them to the search
algorithm of Section 4.4. If this would work, we could evaluate the Rjindael S-box in 8 PBS.
Unfortunately, the algorithm does not converge for values of p “reasonable”, that is to say less
than 7 bits.

We thus need to leverage an alternative representation of the S-box. A well known efficient
Boolean representation of the AES S-box is given in [BP10]. In this work, authors applied logic

o6

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

minimization techniques to produce an optimized Boolean circuit (in terms of number of gates)
of the S-box splitted in 3 phases:

1. A purely linear layer mapping the 8 input bits onto 22 bits.

2. A middle non-linear layer, represented by a circuit with exclusively AND and XOR logic
gates, mapping the previous 22 bits onto 18 bits.

3. A final purely linear layer mapping the 18 bits on the 8 output bits of the S-box.

To design our implementation of AES, we will use the strategy we introduced for Keccak
(Section 4.7.3) and ASCON (Section 4.7.4) and that is illustrated on Figure 4.14. The steps
ShiftRows, MixColumns, AddRoundKeys only involves XOR operators, so we will carry them out
with p = 2. Same things with the steps 1. and 3. of the circuit of SubBytes of [BP10]. The
only part remaining is the Step 2. of the SubBytes, that is a non-linear circuit. We evaluate this
circuit using gadgets and the approach introduced in Section 4.5. A layer of encoding switching
allows to link both parts.

In particular, MixColumns can be reduced to a serie of XOR (in our implementation, we use
the circuit designed in [Max19]).

In the following, we focus on the implementation of the non-linear layer using the approach
by graphs of Section 4.5.

Homomorphization of the S-box

We start from the circuit representation given in the work of [BP10]. This set of instructions is
compiled into a circuit A, compliant with the definitions introduced in Section 4.5.1.

Each of the 18 outputs (zo, ..., z17) are isolated from each other and the circuits (Ao, . ..,.417)
generating them are separated. Of course, some intermediary values are used in several circuits,
but for now we ignore this and we considerate the 18 problems as independent from each other.

Then, for each circuit A;, we run the algorithm explained in Section 4.5 to produce an
efficient graph. We merge all those graphs and run everything for a total of 36 PBS to evaluate
the full circuit A, with a global p = 11. This allows a relatively quick bootstrapping.

Recall that the SubBytes step is made of 16 S-boxes. So, we can derive that one execution
of the SubBytes step takes 16 x 36 = 576 PBS.

The outputs of this step would be encoded with p = 2, allowing the XOR operations of the
following steps to be performed efficiently. We also need to take into account the encoding
switching to come back to p = 11 before each SubBytes. It costs one PBS per bit, so 128
PBS. Finally, this gives a total of 704 PBS per round. For AES-128, which takes 10 rounds, we
estimate a full run to 7040 PBS.

Performances

In terms of performances, with a set of parameters ensuring a security level of A = 128 bits and
an error probability € = 2740, a PBS takes 17 ms on our hardware. The total runtime of the
whole implementation on one thread is 135 s. We note that the 16 evaluations of S-boxes in
SubBytes can be parallelized, as well as each of the 128 encoding switchings before SubBytes.
Moreover, within each S-box, we can locally apply our strategy of parallelization introduced in
Section 4.5.3.

We compare favorably to previous works of [GHS12] and [CLT14], who report timings of
respectively 18 minutes and 5 minutes for a full AES, Once again, authors do not mention the
value of e. The more recent work of [Tra+23], also proposes an implementation of AES-128
using a completely different technique called the tree-bootstrapping. On a similar experimental
setup, but with a failure probability € = 2723, they claim an execution in 270 s on one thread.

o7

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

Identification TFHE parameters Timings

Ref. ‘ Sections n ‘ k ‘ N ‘ OLWE ‘ OGLWE ‘ Bg ‘ fg ‘ BKS ‘ EKS PBS
] PBSyate \ Table 4.5 H 722 \ 2 \ 512 \ 2162 \ 278 \ 26 \ 3 \ 23 \ 4 H 10 ms \

PBSgo | 471,472 | 684 | 3 | 512 216 22 210 1 2 23 4 9.5 ms
PBS(3.) 4.7.3 676 | 5 | 256 222 27 218 11 2% 3 5.25 ms
PBSpyy | 473,474 | 676 | 5 | 256 222 27 218 11 21 3 5.25 ms
PBS(175) 4.74 740 | 2 | 1024 | 23 22 27 1 3 25 3 18 ms
PBS(11,4) 4.7.5 708 | 3| 512 215 22 206 1 4 22 7 17 ms

Table 4.3: Sets of TFHE parameters for each PBS used in our implementations, with the constraints
used to generate the sets, and the performances. Each setting is referenced as PBS, zr,) with Ny =
[logy(||d]|)]. All this parameters ensure a level of security A = 128 bits and a failure probability of boot-
strapping of € = 2740, q is always fived to 23%. PBS,q. refers to the naive case of the gate bootstrapping
implemented in [Zam22¢c] and is used to estimate the timings of the naive strategy in Table 4.6.

Section Primitive Complexity in PBS
471 One round of SIMON-128 64 PBS(9)
o One full run of SIMON-128 4352 PBS 99
479 One round of Trivium 3 PBS(9,2)
o One warm-up phase of Trivium (x) 3456 PBS g 9
473 One round of Keccak 1600 PBS(39) + 1600 PBS(5 1)
o A full Keccak permutation (x) 38400 PBS(329) + 38400 PBS(y 1)
474 One evaluation of Ascon’s S-box 5 PBS(17;5)
o One full Ascon hashing run (x) 3840 PBS(175) + 3840PBS(y 1)
AT 5 One evaluation of the AES S-box 36 PBS(11.4)
o A full run of AES-128 5760 PBS(114) + 1280 PBS(5)

Table 4.4: Complexity of the different primitives we implemented with respect to the PBS of Table 4.35.
The primitives indicated by a (x) are estimations while the others have been fully implemented.

We ran again our code with another set of parameters tailored for the same € and obtained a full
run in 103 s. Note that in our implementation, we used the mode restrictive set of parameters
PBS(11,4) for every bootstrapping (even the ones that should be performed with PBS(5 ;. We also
derived the theoretical timing that could have been achieved if we had implemented this with
two server keys (one for each set of parameters). This theoretical timing should be of 105 s with
e =274 we added it in Table 4.6.

4.7.6 Summary of Applications

We summarize hereafter the parameters and performances of our implementations of crypto-
graphic primitives. Table 4.3 gives an overview of the TFHE parameters used for each value of p
in these examples. They all meet the required level of security of 2'?% and the error probability
e = 2740, Tt also shows the associated p and the norm of d, denoted by Ny (that corresponds to
Ng = [logy(]|d||)]) that are the input of the parameter selection algorithm. To allow the compar-
ison with the strategy of gate bootstrapping, we also included the set of parameters hardcoded
in tfhe-rs to evaluate boolean operators. Table 4.4 shows the complexity of the cryptographic
primitives expressed in PBS with our framework. It can be compared with Table 4.5, that illus-
trates the number of PBS required with the naive strategy of gate bootstrapping. Finally, Table
4.6 shows the concrete performance achieved by our implementations on our machine, as well as
the comparison with other works and with the gate bootstrapping. For more information about
an implementation or a comparison, the reader is referred to the related section.

o8

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

Section Primitive Number of logic gates
471 One round of SIMON-128 256
One full run of SIMON-128 17408
479 One round of Trivium 13
One warm-up phase of Trivium () 14976
473 One round of Keccak 7687
A full Keccak permutation () 184488
474 One evaluation of Ascon’s S-box 16
One full Ascon hashing run (x) 19968
AT 5 One evaluation of the AES S-box 115 ([BP10])
o A full run of AES-128 23360 ([BP10], [Max19])

Table 4.5: Number of logic gates in the circuit of each primitive. This shows the heavy cost of the naive
method of performing one bootstrapping per gate (except the NOT ones).

‘ Primitive Section or Other work Performances
Gate Bootstrapping 174 s
One full run of SIMON [Ben+22] t 128 s
Our work (Section 4.7.1) 10's
Gate Bootstrapping 1498 s
One warm-up phase of Trivium (*) [BOS23] (estimation on our machine) 53 s
Our work (Section 4.7.2) 32.8s
. Gate Bootstrapping 30.7 min
One Full Keccak permutation (+) Our work (Section 4.7.3) 8.8 min
. Gate Bootstrapping 200s
One Ascon hashing (x) Our work (Section 4.7.4) 92s
[GHS12] 18 min
One full evaluation of AES-128 [CLT14] t 5 min
(e = 272%) on one thread [Tra+23] 270 s
Our work (Section 4.7.5) 103 s
One full evaluation of AES-128 Cate Boot.strappmg : 2315
(€ = 2-19) on one thread Our work (Real implementation) 135's
Our work (Theoretical timing with two keys) 105 s

Table 4.6: Timings of evaluation of full primitives, and comparison with previous works when they exist.
Like on Table 4.4, a star (x) is added in the cells if our timing is not obtained from a full implementation
but estimated from an implemented building block. Also, the security level of each implementation is
X = 128 and the default error probability is € = 2740, The concurrent works that do not indicates their e
are marked with t.

99

CHAPTER 4. ACCELERATING HOMOMORPHIC BOOLEAN FUNCTIONS

4.8 Conclusion

In this chapter, we presented a first application of our technique of using an odd plaintext
modulus: by embedding ¢ bits into a prime field, it becomes possible to unlock the full potential
of homomorphic addition and “pack” several bits into a ciphertext. We can then retrieve the
result of any Boolean function f : B¢ — B by a unique bootstrapping. This approach scales
much better than the conventional technique of using a LUT of size 2¢.

We ended this chapter by presenting an homomorphic implementation of the AES scheme.
Implementing the circuit of the S-box using our technique was by far the most challenging
part of this design. This is not very surprising: this component has been designed to prevent
cryptanalysis, which indirectly makes the circuit representation of this function unsuitable for
this kind of Boolean-oriented approaches.

An interesting axis of improvement would be to use an arithmetic representation of the values,
so the S-box would simply be evaluated as a LUT. But by fully committing to arithmetic repre-
sentation, the linear part of the scheme (so the ShiftRows, MixColumnsand AddRoundKeysteps)
becomes the new bottleneck, as we could not leverage the additive homomorphism of TFHE
to evaluate XOR operations anymore. In the next chapter, we elaborate further on these ideas
and construct a more efficient version of homomorphic AES by combining both Boolean and
arithmetic representations.

60

Chapter

5)
I Accelerating Homomorphic
AES Evaluation

The last example of application of the previous chapter was to evaluate homomorphically the
AES cipher. But why would one want to perform such a computation in the first place?

There are two answers to this question. First, AES is a particularly interesting benchmark, as
an example of a nontrivial algorithm which has eluded “practical” FHE execution performances
for years. This is part of the reason why it will most likely be selected by NIST as a flagship
reference in its upcoming call on threshold (homomorphic) cryptography [ST25]. Since 2023,
the algorithm has thus been the subject of a renewed attention from the FHE community and
has served as a playground to test advanced operators[Tra+23; Wei+23; BPR24; Wei+24]. AES
is particularly interesting as a benchmark notably because of the tension between boolean- and
byte-oriented operations within the algorithm.

There is also a more down-to-earth reason: evaluating symmetric ciphers using FHE is
the core of a cryptographic technique called transciphering, which is a promising solution for
solving the ciphertext expansion problem of FHE. In this protocol, the client first encrypts
its data using a symmetric encryption scheme and sends both the encrypted data and (once
and for all) the FHE-encrypted symmetric key to the server. Leveraging its encrypted-domain
computing capabilities, the server can then decrypt the encrypted data within the homomorphic
domain, ultimately producing homomorphic ciphertexts on which it can perform the requested
calculations. With this trick, the amount of data uploaded by the client is drastically reduces,
as symmetric ciphertexts are much lighter than homomorphic ones.

In this chapter, we introduce Hippogryph, the fastest homomorphic implementation of AES
using TFHE at the time of writing. To construct it, we leveraged three main ideas:

- We generalized the p-encoding construction introduced in Chapter 4 to the arithmetic
case.

- The LUT-oriented implementation of [Tra+23] is very efficient to evaluate the large S-box
of AES, so we borrowed this idea as it was.

- We associated both previous techniques by developing a framework of conversion between
Boolean and arithmetic representations.

The result of this work is doubly interesting: first, we manage to outperform the rest of the
literature on homomorphic AES evaluation. Second, we develop a generic framework useful to
resolve the recurring tension between Boolean and arithmetic representations within homomor-
phic circuits, which we believe is of independent interest.

We start this chapter by introducing the notion of transciphering in Section 5.1, which will
be a recurring theme in the rest of this manuscript. Then, after some preliminaries on the AES
cipher (Section 5.2), we introduce in Section 5.3 some advanced homomorphic operators from
[Tra+23] that will be useful in this work. We then generalize the p-encoding construction of
Chapter 4 to the arithmetic case (Section 5.4). Finally, Section 5.5 introduces our new design
and Section 5.6 presents a detailed comparison with existing approaches, supported by relevant
benchmarks.

61

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

Table 5.1: State-of-the-art single-core homomorphic evaluation of AES. The table indicates both the
original timings, in seconds, provided in the papers and, in brackets, the timings obtained on our single
machine test bench (a 12th Gen Intel(R) Core(TM) i7-12700H CPU laptop).

Year Reference Method Timings
[Tra+23| Tree-Based Method (TBM) 270 (270) s
2023 [BPR24] (Chapter 4) p-encoding method 135 (90) s
[Wei+23] TFHE in “LHE” mode 86 (87) s
2024 [Wei+24] TFHE in “LHE” mode 46 (60) s
2025 This work Combined Tree-Based Method (or 325
Tree-Based Bootstrapping). See
Section 5.3.2 (TBM)/p-encodings

5.1 Introduction to Transciphering

One common challenge with all FHE schemes is that the ciphertexts are much larger than the
corresponding plaintexts. For example, a plaintext message of a few kilobytes can require tens
or even hundreds of megabytes of data, making the processing of large data sets impractical.
While compression techniques can help reduce the expansion factor in TFHE ciphertexts, the
encrypted data still remains an order or two of magnitude larger than the original plaintext.

It is possible to mitigate this issue using transciphering [NLV11]. The idea is to off-load the
task of actually encrypting the data to a symmetric cipher, and to simply encrypt homomorphi-
cally the key that is used. The user then sends both the homomorphically encrypted key and the
ciphertext to the server, which can then homomorphically decrypt the received ciphertexts. This
is done by running a fully homomorphic evaluation of the decryption function of the symmetric
cipher, producing valid homomorphic ciphertexts representing the data. The server can then
proceed to the homomorphic operations, like in the traditional FHE setting. This principle is
illustrated on Figure 5.1

Implementing FHE encryption through transciphering solves the bandwidth issue: the data
sent by the client to the server is encrypted using a symmetric cipher, thus avoiding the significant
ciphertext expansion implied by direct FHE encryption. The only exception is the symmetric
key, which does experience expansion, but this overhead is amortized across the entire data set.

But still, a question remains: which symmetric cipher should we use ? The straightforward
solution is to simply pick something very standard, such as AES, and turn it into a homomorphic
version. This is what the first works on transciphering tried to do: the first attempt to transci-
pher AES ciphertexts into FHE data was made in 2012 by Gentry, Halevi, and Smart [GHS12].
They used the BGV scheme [BGV12], a fully homomorphic encryption method based on the
Ring-LWE problem, as implemented in HElib [HS20], an open-source library for FHE. How-
ever, their implementation resulted in an execution latency of 17.5 minutes, with now obsolete
parameters (despite an amortized cost of 5.8 seconds per block).

Since then, some progress have been made. We give a tour of the current litterature on
the topic in Section 5.6. But still, it seems that fast data transmission with AES will remain
impractical, because its design is not adapted at all to homomorphic evaluation.

That is why many researchers have since developed new “FHE-friendly” symmetric cryp-
tosystems to improve efficiency. Several proposal exists, including block ciphers such as LowMC
[Alb+15], PRINCE [Bor+12], and CHAGHRI [AMT?22], as well as stream ciphers like Elisabeth
[Cos+22], PASTA [Dob+-23|, Kreyvium [Can+16] and Transistor [Bau+25]. These new schemes,
sometimes referred to as hybrid encryption schemes, offer faster and more efficient homomorphic
execution, though none have yet been standardized.

Still, homomorphic AES remains an active line of research in the FHE community. In 2022,
the National Institute of Standards and Technology (NIST) announced a future call for threshold

62

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

Client Server

= =
Pﬁ .-.

w
-0
oo~

O
(-

£
0110 T [o110
4.{1001 > Dec " 1+{1001
101 ? 101
52
0110 st o o~
5. (1001 %
1010, | Isft

Figure 5.1: An illustration of the transciphering process:

1. Data is encrypted with the symmetric cipher.

2. The symmetric key is homomorphically encrypted.

3. The client uploads both the encrypted data, as well as the encrypted key.
4

. The server homomorphically evaluates the decryption algorithm of the symmetric cipher, using the
symmetric key homomorphically encrypted. It retrieves the data, as valid homomorphic ciphertexts.

5. The server can then evaluate the homomorphic application!

The red color is for symmetric algorithms, green for FHE, and hatched algorithms means that they are
evaluated homomorphically.

63

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

encryption with a specific focus on FHE, indicating that AES would serve as the benchmark
for evaluating proposals [ST25]. It particularly exemplifies the challenge of switching between
boolean- and byte-oriented operations, a recurrent issue in TFHE-based implementations.

5.2 Preliminaries on AES

The Advanced Encryption Standard (AES), based on the Rijndael algorithm winner of the NIST
competition in 2000 [DRO00], is a symmetric block cipher supporting key sizes of 128, 192, and
256 bits. Depending on the key size, AES uses 10, 12, or 14 rounds of processing, each applying
a fixed sequence of substitution, permutation, and mixing steps to transform plaintext into
ciphertext (or ciphertext into plaintext for decryption). A key schedule generates round keys
for each encryption round, plus an initial key.

Hippogryph focuses on AES with 128-bit keys, which uses 10 rounds. The encryption begins
with an AddRoundKeystep, followed by 10 rounds. Each round includes four steps: SubBytes,
ShiftRows, MixColumns, and AddRoundKey, except the final round, which omits MixColumns.
Below, we recall the key expansion and the subroutines:

e Key Expansion: The Key Expansion operation is performed once for a given secret key.
Starting from the 128-bit key (in our context), it generates eleven 128-bit round keys, which
are then used in the AddRoundKeyoperation throughout the AES encryption or decryption
process, without needing access to the original key. The key expansion involves XORs and
Fo56 multiplications.

e SubBytes: The SubBytesoperation is the only non-linear transformation in the cipher. It
involves a substitution step, where each byte in the state matrix is replaced according to
a fixed S-box. Since it operates independently on each byte of the state, SubBytescan be
easily parallelized, allowing for more efficient execution.

e AddRoundKey: During this transformation, the state is updated by combining it with the
current round key using a bitwise XOR operation. Specifically, the 128-bit round key is
organized into a matrix format to align with the structure of the state matrix, and the
two matrices are XORed element-wise to produce the new state.

e ShiftRows: The ShiftRowsstep is a byte transposition that cyclically shifts the rows of
the state by different offsets. For AES with 128-bit keys, the first row remains unchanged,
the second row is shifted by one byte, the third by two bytes, and the fourth row by three
bytes.

e MixColumns: The MixColumnsstep processes the state column by column through matrix
multiplication. To compute each byte of the state matrix, they combine scalar multipli-
cation in GF(256) with XOR operations. This approach facilitates parallelization of the
operation.

5.3 Some Building Blocks for LUT-based Evaluation

In this section, we present the approach from [Tra+23], some components of which we use for
our own work. We formally present some advanced homomorphic primitives used in this work
that we reuse as well.

[Tra+23] is a “Full-LUT” approach, that is to say AES is evaluated entirely with TFHE’s
programmable bootstrapping, encoding exclusively all operations within LUTs. To meet the
performance constraints of the bootstrapping algorithm, this method operates on elements in
Zq¢, ensuring efficient computation.

64

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

5.3.1 AES Subroutines as LUTs

The SubBytesstep, which involves the evaluation of an S-box, is inherently a LUT operation and
is therefore naturally implemented in FHE using a PBS. However, PBS is too slow in Foss (as we
have seen in Section 2.8). So, they rely on a construction evaluating PBS over Zjg rather than
Fy56. Moreover, converting the other AES steps into LUT evaluations also requires additional
effort.

In particular, in the original AES design [DRO00], the MixColumnsstep is computed using a
series of XOR operations and multiplications in Fo56. Unfortunately, TFHE’s native multiplica-
tion ClearMultTFHE cannot directly handle these Fo56 multiplications because of the polynomial
nature of the elements of this field. As a result, MixColumnsmust be reformulated as a LUT
evaluation.

Additionally, the AddRoundKeystep, which uses XOR as its key operation, presents its own
challenges because XOR is a bivariate operation that requires two inputs. Classical bootstrap-
ping, which operates on single inputs, is insufficient for this purpose. To address this, the authors
utilize a specialized bootstrapping method that supports operations on multiple encrypted in-
puts.

5.3.2 LUTs Evaluation

Since the AES evaluation involves computing an 8-bit S-box, a straightforward solution would
be to work with 8-bit messages. With such messages, the homomorphic S-box evaluation would
require only one bootstrapping per byte. However, processing messages with more bits sig-
nificantly slow down the bootstrapping process. To address this issue, [Tra+423] proposes a
decomposition approach and demonstrates that the optimal representation of 8-bit inputs for
their purpose is in Zjg. Specifically, a message m € {0,---,255} is split into two 4-bit chunks
(or nibbles) h and [such that m = 16h + . The encryption of m is then represented as two
ciphertexts encrypting h and [with the same key s.

However, bootstrapping these decomposed inputs requires a method capable of handling
multiple encrypted inputs. The authors explore several approaches for this, namely the chain-
based method and the tree-based method [GBA21]. Their analysis concludes that the Tree-
Based Method (TBM) is the most suitable for their needs. They also relies on the Multi-Value
Bootstrapping. See Section 5.3.2 (MVB) to produce several outputs for the cost of one PBS.
We provide details about TBM and MVB in the following:

Multi-Value Bootstrapping from [CIM19]. Multi-Value Bootstrapping (MVB) is a tech-
nique that enables the evaluation of k distinct Look-Up Tables (fi)i1<i<x on a single encrypted
input, using only one BlindRotate. This method is based on the factorization of the accu-
mulator polynomials acc;(X) associated with each function f;. Specifically, each accumulator
polynomial is expressed as:

N-1
acci(X) = Z Ozi,ij, Q€ Zq.
=0

The factorization then splits it into two parts:
acci(X) = vo(X) - v;(X) mod (XN +1),

where vp(X) is a common factor shared across all accumulators set as:

w(X) =5 - (1+X 4+ XV,

N |

65

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

HENEE RN NN NN

BlindRotate BlindRotate BlindRotate BlindRotate

(a) Classic bootstrapping method to evaluate several LUTs on a single input

LT

BlindRotate

HEMEN

~ ~ ~ ~

XU

TIFT] [(TI 1 [TFT] [TFI1]

(b) MVBmethod

Figure 5.2: Difference between the classical approach and the MVB. Pink arrows represent clearMul t TFHE
operations on GLWE ciphertexts (Figure inspired by [Tra+23]).

and v;(X) is a distinct factor specific to each function f;:
vi(X) = o+ in_1+ (i1 —aig)- X+ + (in_1 —ain_2)- XL
This factorization is made possible thanks to the identity:
I+X+-+X¥"NH.1-X)=2 mod (XN +1).

By leveraging this factorization and as illustrated on Figure 5.2, multiple LUTs can be evaluated
on a single encrypted input by performing the following steps:

1. Computing a BlindRotate operation on an accumulator polynomial initialized with the
value of vg.

2. Then multiplying with ClearMultTFHE the obtained rotated polynomial by each v;(X)
corresponding to the LUT of f; to obtain the respective acc;(X).

Finally, at the cost of a single BlindRotate and k clearMultTFHE operations (on GLWE), one
can obtain the evaluation of k£ different LUTs on one single encrypted input. Moreover, this
specific choice of factorization allows for a very-low norm for the vectors v;’s (which in practice
are very sparse), and so a very-low noise expansion.

This MVBprimitive thus allows significant speed-ups in the implementation of [Tra+23], in
particular in the evaluation of the S-box or in the multiplications in Fa5¢ that occur during
the MixColumnsstep. Indeed, since each byte is decomposed into two nibbles h and [, the LUT
corresponding, for instance, to the S-box must also be decomposed into two tables: one providing
the most significant nibble and one providing the least significant nibble. That is to say:

S-box]i]

16 J and tab;sy[i] = [S-box[i]];4 .

Eabyeli] = {

Each of these tables must be evaluated on an 8-bit payload ciphertext.

Tree-Based Method from [Tra+23]. Let B,B’,d € N*. The Tree-Based Method (TBM)
allows to evaluate a LUT f : Zgs — Zp with a large input size B?, by processing d limbs of
data in Zp. We consider input messages that are written as:

d—1
m = ZmiB’, with m; € Zp,
i=0

66

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

0@23 1@30 2@01 3@12

selector ¢; = [1]

selector ¢y = [2]

Figure 5.3: Illustration of the tree-based method on messages my = 1,ms = 2 in the space Z4. The
corresponding ciphertexts are ¢y € LWE(my) and co € LWE(mg). We apply the addition in Z, via
programmable bootstrapping. Red arrows indicate bootstrappings. (Figure inspired by [Tra+23].)

and that are represented by d ciphertexts (cg, c1, ..., c4_1) corresponding to the d message com-
ponents (mg, my,...,mg_1). To evaluate f, we encode a LUT for f using B4 accumulators,
each represented by a polynomial acc;(X). These accumulators encode the functions:

fi:ZB —)ZB/
z— f(i+x- B

Next, we apply a BlindRotate and a SampleExtract to each accumulator acc;(X), using c4—1 as
the selector. This operation produces B*~! LWE ciphertexts, each encrypting f(i+mg_1-B%1)
for ¢ € Zpga-1. Finally, a Keyswitch operation from LWE to GLWE aggregates these ciphertexts
into B4~2 GLWE encryptions, representing the LUT of h, defined as:

h:(Zp) ™t 7

('LLO, cee 7ud71) = f o g(UO, ey, Ud—2, md*l)
using the bijection g, which reverses the decomposition:

g: (ZB)d — Zpa
d—1

(uo,...,ud,l) — ZUZ . B
1=0

This process is repeated iteratively, using the next ciphertext at each step, until a single
LWE ciphertext encrypting f(mo,...,mg—1) is obtained.

In the implementation described in [Tra+-23], this primitive is employed to evaluate an 8-bit
LUT by dividing it into two limbs of 4 bits each, which they determined to be optimal for their
specific setting. To further enhance the performance of the TBM, the blind rotations for the
accumulators acc;(X) of the first layer of the tree can be performed simultaneously using the
MVBtechnique (as discussed in [GBA21]).

Finally, the “full-LUT” approach facilitates efficient computation of the S-box through the
Tree-Based Method, as opposed to directly evaluating the corresponding Boolean circuit. How-
ever, this approach also requires LUT-based computation of XOR operations and other inter-
mediary steps, which is notably slower when operating in Zigs compared to binary messages.
Consequently, our new method Hippogryph proposed in this chapter strategically applies LUT
evaluation exclusively where it is most effective and yields the best performance, namely for the
evaluation of the S-box.

67

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

5.4 Generalization of p-encodings to the Arithmetic Case

In Chapter 4 of this thesis, we introduced the notion of p-encodings and used it in Section
4.7.5 to evaluate AES homomorphically. In this method, data was encrypted bit per bit and
only Boolean operations were performed. It leveraged the fact that, in the plaintext space Zao,
the SumTFHE operation actually performs a XOR. Thus, the linear operations MixColumnsand
AddRoundKeycould be efficiently performed with minimal cost, using only the homomorphic sum
of TFHE. To be able to evaluate SubBytes under Boolean representation, we used p-encodings
to evaluate the circuits of SubByteswith a minimal number of bootstrappings. While this has
brought some improvements, evaluating the LUT of AES as a Boolean circuit is still suboptimal,
and in this chapter we attempt at doing it using arithmetic representation.

To achieve that, we generalize p-encodings beyond the Boolean case by defining the (o, p)-
encoding construction. Informally, instead of embedding the Boolean space in Z,, we embed
any space Z, in Z, (with o < p). So, what was called p-encoding in Chapter 4 corresponds to a
(2, p)-encoding in this one. Definition 5.4.1 formalizes this generalization.

Definition 5.4.1 ((0, p)-encoding). Let Z, be the message space. A (o0, p)-encoding is a function
E : Z, — 2% that maps each element of Z, to a subset of the discretized torus Zp. A (0,p)-
encoding is valid if and only if:

{vu, J) € Z3,i# j,E@)NE(Y) =0 and (5.1)

if piseven: Vo € Zp,Vi € Zo: x € E(i) — [x+ g}p € &([—1ilo)

The latter property is a direct consequence of the negacyclicity problem, which we discussed
extensively in Chapter 3.

In this work, we focus exclusively on cases where p = 2 or p is an odd prime. As a result,
a lot of the subleties of negacyclicity can be overlooked. Furthermore, among the various types
of (o, p)-encodings, one particular class proves especially useful for our purposes: the canonical
(0, p)-encoding.

Definition 5.4.2 (canonical (o, p)-encoding). A (o, p)-encoding £ is said canonical if and only
if it verifies:

E Lo — Ly
T =T

(with o < p). Informally, we simply embed a smaller space into a larger one, without altering
the order of the elements.

In Chapter 4 the Boolean space is used (so o = 2). The SubBytescircuit is evaluated using
(2,11)-encoding, while the rest is evaluated with a (2,2)-encoding (i.e., the trivial encoding of
TFHE with plaintext space Zg). Consequently, an Encoding Switching operation is required.
This operation can be straightforwardly performed using a PBS.

Definition 5.4.3 (Encoding Switching). Let ¢ be a ciphertext encrypting a message m € Z,
under the (o, p)-encoding €. Its encoding can be switched to the (o, p’)-encoding £’ by applying
a PBS on c evaluating the function:

Castg g : Zp — Zp’

LBP—):E/

where 2/ is defined as Vi € Z,,z € £(i) = 2/ € £'(4).

68

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

5.5 Design of Hippogryph

Building on the primitives presented in Section 5.3 and 5.4, we develop a hybrid approach,
Hippogryph, that not only combines their respective strengths but also introduces new contri-
butions to enable their effective integration. The guiding principles of this design are outlined
below:

e The SubBytesstep, which was the weak point of our implementation in Chapter 4, is
evaluated using the strategy of [Tra+23|.

o Conversely, the linear steps (namely ShiftRows, MixColumnsand AddRoundKey) are com-
puted using a trivial (2, 2)-encoding, which makes them extremely fast.

o Since the two aforementioned points rely on different data representations (arithmetic for
SubBytesand Boolean for the other steps), a decomposition layer and a recomposition layer
are necessary to transition from one to another. The decomposition and recomposition
steps are denoted by Decomposer and Recomposer, respectively.

Our design for one round of AES is summed up on 5.4. In the following we explain each of
its components.

SubBytes. The SubBytesstep is implemented following the design of [Tra+23]. Each 8-bit
input is represented by two ciphertexts, each encrypting a 4-bit limb. Two instances of the
TBM are then used to compute the limbs of the output. The only modification from the design
of [Tra+23] is the adoption of the canonical (16, 17)-encoding, as specified in Definition 5.4.2:

&7 Le — Zar
7> 1.

This modification is introduced to ensure compatibility with the Recomposer operation, a point
which will be explained in the dedicated paragraph. In Figure 5.4, ciphertexts encrypted under
this (16, 17)-encoding are represented by blue rectangles. This process is repeated 16 times, once
for each byte of the AES state. An additional improvement comes from the fact that the two
TBM are using a MVBto evaluate the first step. So, the same common factor can be used for
both evaluations, requiring only one BlindRotate per byte for this first step.

Linear Circuit. For this part, we follow the design of Chapter 4. The ciphertexts manipulated
in this block are encoded under the trivial (2, 2)-encoding £, and encrypt a single bit each. They
are represented by yellow squares on 5.4. Consequently, this circuit takes 256 inputs (one for
each of the 128 bits in an AES block, and one for each of the 128 bits in the current round key),
and outputs a new state of 128 bits, by combining the three following steps:

e ShiftRows: This step is trivially implemented in FHE by permuting the input ciphertexts
according to the AES specifications.

e MixColumns: Here, we use the XOR-only circuit representation of [Max19]. Evaluating a
XOR on ciphertexts under & is simply done using the native addition of TFHE SumTFHE.

e AddRoundKey: This step is a simple XOR between the state and the round key.

Evaluating the sums within this circuit increases the noise in the ciphertexts. However, this
problem can actually be overlooked: using p = 2, there is plenty of room for the noise to grow, so
the bottleneck of the construction in terms of noise is actually the intermediate layer inside the
TBM in Zi7. In our experimentations, we made sure to select parameters ensuring correctness
up to the target probability of success.

69

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

SubBytes
Tree >
PBS d
Tree I
PBS d
A4
| | |
A4 A4
g
g MVB MVB g
g g
=
Round Key
VN
R
O]
e “«—0
Oe—— 0
T “«—0
Linear Circuit P
Do M g
e “«—0
e—— L

Figure 5.4: Structure of one round of AES with our method. Ciphertexts in blue live in Zy7 while the ones
in yellow are in Zs. Squares represent encryptions of one single bit while rectangles represent nibbles.
Indicative noise levels at different spots of the circuit are indicated by the gauges.

70

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

Decomposer. From the SubBytesstep to the linear circuit steps, a switch of representation
is needed at two levels. First, we need to decompose each ciphertext of a 4-bit limb into 4
ciphertexts each encrypting a single bit. Secondly, we need to switch the encoding from &7 to
&y. Fortunately, by combining the MVBprimitive and the encoding switching primitive (from
Definition 5.4.3), it is possible to do both changes at once for each nibble with a single PBS.
Formally, the MVBwill evaluate the four functions:

Vi € {0,...,3},fi 2 L7 — Lo
x = E2((Er7 (2))i)

where (y); refers to the extraction of the i-th bit of y.

Recomposer. Conversely, a transformation from the Boolean domain to the arithmetic do-
main is required. As in the Decomposer operation, this involves two key steps:

e Casting the ciphertexts from a plaintext modulus of 2 to 17.
e Recombining each group of 4 bits into a single ciphertext encrypting the whole nibble.

To achieve this efficiently, we introduce four intermediary (2, 17)-encodings, namely:

Vi € {O,...,3},81(? 2 Lo — Tt

= 0Oifz=0
X .
2L if = 1.

Using little-endian representation, we perform an encoding switching (5.4.3) on the i-th bit of
each nibble, transitioning from &; to 51(17). In Figure 5.4, the resulting ciphertexts are representing
by squares filled with different shades of blue. Once the bits are expressed in this intermediary

representation, we simply sum them to reconstruct the result in &;7.

Necessity of an odd modulo in SubBytes: The inputs to the Recomposer are encrypted
modulo 2. Since no padding bits are used, the negacyclicity problem necessitates that the PBS
in the Recomposer evaluates a negacyclic function. As stated in Property 5.5.1, the existence of
a Boolean recomposition algorithm relying solely on PBS and linear operations depends on the
parity of the output plaintext modulus.

Property 5.5.1. A Recomposer using only linear operations and one PBS per bit exists only if
the output modulo is odd.

Proof. Let p be an integer. Let (bg,...,bq—1) be the bits to encrypt, and let (cg,...,cq-1)

denote their corresponding ciphertexts, encoded with the trivial (2,2)-encoding £. We aim

to construct a Recomposer that uses only one programmable bootstrapping (PBS) per bit and

linear operations to homomorphically compute an encryption of the message m = Zfz_gl b;2!

under the canonical (2%, p)-encoding &p. The purpose of this proof is to demonstrate how the

parity of p influences the existence of such an algorithm.

To do so, following the blueprint introduced earlier in the section, we want to bootstrap the

ZQ — Zp

ciphertext c; into Z, with the p-encoding EISZ) =<¢0— {0} . Once we have those, a simple
1 {20F1}

sum will reconstruct the message under the canonical (2%, p)-encoding. Let us analyze if this

bootstrapping is possible.

71

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

As the ciphertexts are encrypted modulo 2, there is no bit of padding. So, if we send them
modulo p with a PBS, the result will necessarily be encoded under a negacyclic (2, p)-encoding,
Ziy + Zp
that is to say of the form: £08) = { 0 — {y} with v € Z,,.

L= {[=lp}

Now, we need a linear transformation that casts a ciphertext from £®8) to Szgi). Let us
denote this hypothetical linear transformation by £, and define it as:

L7y — 7y
r—a-r+b

By simply considering the encoding switching from £ to 5]()0), it is clear that the constants
a and b need to verify the property:

a-y+b=0 modp
a-(—y)+b=1 modp

which can be rewritten as:

b=2"1 modp
y=((b-1)-a"! modp

It is clear that such a b only exists if and only if 2 has an inverse modulo p. This latter
argument forces p to be odd. In that case, fixing a to 1, the (2, p)-encoding

ZQ — Zp

e = 30 {271~ 1],}
1= {[1 =27}

is supposed to be what we are looking for.

Let us check if that is the case. As it is negacyclic, the PBS is evaluable. Then, the linear
transformation x — x+27! mod p produces a ciphertext under the right p-encoding. Trivially,
adding a constant to a TFHE ciphertext do not increase its noise. The same reasoning can be
followed for the others bits.

Finally, summing the produced ciphertexts gives an encryption of m under &,. The whole
procedure is only possible if p is odd. O

In [Tra+-23], the authors determined that the most time-efficient way to slice the 8-bit inputs
of the S-box for the tree-based method is into two 4-bit chunks. Given that our Recomposer block
requires an odd plaintext modulus, as established in Property 5.5.1, we selected the smallest
odd modulus capable of representing 4-bit values: p = 17.

Key Expansion. To the best of our knowledge, no previous work on AES transciphering has
performed the key expansion phase in the homomorphic domain. Similarly, we work under the
assumption that FHE encryptions of the eleven AES round keys are directly available. Since
the round keys need to be computed only once for a given secret key, this makes sense in a
client-server setting as the client is then expected to compute the key expansion and to send
encryptions of the resulting round keys (rather than sending an encryption of the secret key
under the homomorphic scheme).

72

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

5.6 Experimental Results

In this section, we compare our new framework to several state-of-the-art homomorphic AES
executions, including the ones performed with the two building blocks of our new design. We par-
ticularly emphasize that all implementations have been tested on the same machine, a 12th Gen
Intel(R) Core(TM) i7-12700H CPU laptop with 64 Gib total system memory with an Ubuntu
22.04.2 LTS operating system. All execution timings can be found in Table 5.3. Parameter sets
used to obtain these results are presented in Table 5.2. Depending on the framework, we had
to use different implementations of TFHE as available in the TFHElib!, tfhe-rs? or TFHEpp?
libraries.

Table 5.2: Parameters sets used for our homomorphic AES evaluation, with \ = 128 bits as the security
parameter. pe, denotes the probability of bootstrapping failure. Bxs and lks denote the basis and levels
associated with the gadget decomposition in KeySwitch, Bpgs and €pgs denote the decomposition basis
and the precision of the decomposition of BlindRotate. oiwe and ogiwe are the standard deviations of
noises used in LWE and GLWE ciphertexts, respectively.

Derr n N | k| lpes | Bpes | Bks | lks | oLwE | OGLWE
-1 75411024 [1] 2 223 24 3 | 2161 2167

2-128 11900 | 4096 | 1 2 215 23 6 | 2445 22

Table 5.3: Comparison of our method with different state-of-the art approaches on a single core. The
only execution timing that was not obtained on our machine is marked with a *, i.e. for Thunderbird,
making the comparison more in favor of that method. See the discussion at the end of Section 5.6.1.

Year Reference Framework Library Timings
(s)
[Tra+23] Tree-Based Method TFHELlib ? 270

2023 (TBM)
[BPR24], Chap. 4 p-encoding method tfhe-rs’ 90
[Wei+23] Fregata TFHEpp ° 87
2024 [Wei+24] Thunderbird TFHEpp * 46*
’ 2025 ‘ this work ‘ Hippogryph ‘ tfhe-rs® ‘ 32 ‘

The implementation of Hippogryph and the unified software test bench for AES execution
over TFHE, which we used to obtain the consistent same-machine experimental results presented

in this paper, are available as open-source Git repositories®.

5.6.1 State-Of-The-Art Homomorphic AES Executions

The approaches introduced in [Tra+23] and [BPR24], which form the foundation of our proposal,
are discussed in 5.3. Additionally, we briefly describe the two other main state-of-the-art methods
for homomorphic AES executions: Fregata [Wei+23] and Thunderbird [Wei+-24].

Fregata [Wei+23]

In this work, the authors present a novel evaluation framework especially designed for faster AES
homomorphic evaluation. Instead of relying on functional bootstrapping, they decided to use

https://tfhe.github.io/tfhe/

*https://github.com/zama-ai/tfhe-rs

3https://github.com/virtualsecureplatform/TFHEpp

%https://github.com/CryptoExperts/Hippogryph and https://github.com/daphnetrm/Benchmark-of-\
gls{AES}-Evaluation-with-\gls{TFHE}.

73

https://tfhe.github.io/tfhe/
https://github.com/zama-ai/tfhe-rs
https://github.com/virtualsecureplatform/TFHEpp
https://github.com/CryptoExperts/Hippogryph
https://github.com/daphnetrm/Benchmark-of-\gls {AES}-Evaluation-with-\gls {TFHE}
https://github.com/daphnetrm/Benchmark-of-\gls {AES}-Evaluation-with-\gls {TFHE}

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

CMUX gate as the building block of their framework. They also propose a new technique for an
efficient S-box evaluation relying on mixed packing (which combines different ways of organizing
encrypted data within polynomials to balance parallelism and flexibility). But one of the major
contributions of this work is the optimization of TFHE’s circuit bootstrapping. Indeed, they
propose to use PBSManyLUT [Chi+21] in the first step of circuit bootstrapping. As their
framework relies on the use of TFHE in LHE mode, this optimization of circuit bootstrapping
is the key to an efficient homomorphic AES evaluation. Fregata being designed to perform one
round of AES without any bootstrapping and to use circuit bootstrapping on each bit of the
state matrix after a full round evaluation, running these circuit bootstrappings then becomes
the most time consuming part. Finally, they also leverage on encoding messages in {0,1} as
{0,213} over the torus to transform XOR operations into simple LWE sums (which is the same
thing as using our (2, 2)-encoding in the linear parts).

Their results, obtained with the TFHEpp library [Mat20], reached an AES homomorphic
evaluation latency of 86 seconds on a 12th Gen Intel(R) Core(TM) i5-12500x 12 with 15.3 GB
RAM machine. When running the Fregata implementation'® on our machine, we also obtained
a latency of about 87 seconds.

Thunderbird [Wei+24]

The work presented in the Thunderbird paper leverages on the Fregata framework to produce
an even faster AES homomorphic evaluation, still using TFHEpp. Specifically, Thunderbird
combines the gate bootstrapping and leveled evaluation modes of TFHE to cater to various
function types within symmetric encryption algorithms. More specifically, their approach builds
upon the Fregata framework with additional optimizations:

e The circuit bootstrapping proposed in Fregata is optimized by replacing the second step
(namely a private keyswitch) by a public keyswitch followed by a new operation called
EvalSquareMult.

o Instead of following a standard AES implementation, the authors introduce a LUT-based
AES implementation that merges SubBytes, ShiftRows and MixColumns operations into
8-t0-32-bit tables (which results in a smaller number of XOR operations when running the
overall AES).

Moreover, as in [Wei+23], they rely on encoding the messages in {0, 1} as {0, 3} over the Torus.
With such encoding, XOR operation can be performed for free. They call this optimization
FreeXOR. They also propose another technique to evaluate XOR, namely HomoXOR relying on
gate bootstrapping with messages encoded in {%, é} over the Torus. The evaluation of AES
with this technique is less efficient than with FreeX0R. For this work, the tests were run on an
Intel(R) Core(TM) i5-11500 CPU @ 2.70GHz machine with 32 GB of RAM and they obtained
an average execution latency of 46 seconds.

It is important to note that the implementation of the Thunderbird framework is not publicly
available. To obtain a fair comparison with our work, we tried to reproduce their results by
implementing the framework ourselves, starting from Fregata on which Thunderbird is based.
We successfully implemented all of Thunderbird building blocks but one-the improved circuit-
bootstrapping—which was producing decryption errors despite our best efforts to faithfully follow
[Wei+24]. As a consequence, for this specific building block, we relied on the theoretical speedup
reported in the Thunderbird paper, which results in a slightly unfair comparison to our approach.
In summary, we measured an AES execution time of 60 secs with our implementation, but used
instead the 46 secs reported in [Wei+24] for comparison.

Ohttps://github.com/WeiBenqgiang/Fregata

74

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

5.6.2 Results

To measure the performances of our method, we implemented it using our fork of tfhe-rs
[Zam?22c|, modified to support odd moduli (see Section 4.6.2). The results were then compared
against the current state-of-the-art frameworks.

For a fair comparison, all implementations were tested on the same machine, using a single
core. As shown in Table 5.3, our novel framework achieves the lowest latency when evaluating
the AES as the evaluation of the algorithm only takes about 30 seconds. Hence, Hippogryph is
between 1.44 and 1.87 times faster than the best-in-class Thunderbird approach (depending, as
discussed above, whether we respectively consider the 46 secs timing given in the Thunderbird
paper or a timing of 60 secs as measured with our implementation). Moreover, when enabling
several cores on our 12th Gen Intel(R) Core(TM) i7-12700H CPU laptop, we can reach an
execution time that is smaller than 5 seconds, using only 6 cores, and further reduce this timing
to 1.1 seconds by using 32 cores on a more powerful machine as discussed below.

A Few Words About Parallelisation. The purpose of transciphering is to minimize the
bandwidth overhead when transferring large amounts of data. Given that servers typically
have more computational resources than clients, they can effectively leverage multiple cores to
parallelize computations and enhance execution times. In this context, AES offers inherent
parallelizability, as most operations within each encryption round can be executed concurrently
on each byte of the state matrix—except for the ShiftRows step.

It is worth noting that in practical transciphering applications, one could process multiple
AES blocks in parallel to achieve better amortized performance. However, the parallelization
we apply here focuses on accelerating computations within a single AES block, rather than
processing multiple blocks independently.

To implement this approach, we used Rust’s rayon crate. Our tests were conducted tests on
two distinct machines to assess performance across different setups:

» Laptop (12th Gen Intel(R) Core(TM) i7-12700H CPU, 6 cores): We parallelized all round
functions except ShiftRows, which mainly involves reordering ciphertexts within the state
matrix. This setup already provided a significant speedup compared to single-core execu-
tion: 4.6 seconds for a failure probability of 2740,

o Server (AMD Ryzen Threadripper PRO 7995WX, 96 cores): We leveraged 32 cores to
process the 16 bytes of the AES internal state in parallel, each using one thread for each
of the 2 independents TBM in the SubBytesstep. This setup brought us remarkably close
to breaking the 1-second barrier, with an execution time of just 1.1 seconds.

Detailed execution timings illustrating these improvements can be found in Table 5.4.

Memory-wise, our implementation manipulates at most 128 TFHE ciphertexts which ac-
count for the internal state and 128 x 11 other ciphertexts for the round keys. Each TFHE
ciphertext accounts for around 48 kbits (755%64 bits). Hence, the total memory consumption of
our implementation is approximately 74 Mbits when encrypting a single block. When encrypt-
ing multiple blocks in parallel, the ciphertexts for the round keys are shared across all blocks,
reducing the per-block overhead.

Key Expansion: To the best of our knowledge, all previous works on AES transciphering do
not perform the key expansion phase in the homomorphic domain. To ensure fair comparisons
with related works, we made the same assumption. However, we do have a TFHE implementa-
tion of key expansion that has roughly the same structure as Hippogryph. Our measurements
show that a run of KeyExpansionis approximately 20 % faster than the encryption/decryption.

75

CHAPTER 5. ACCELERATING HOMOMORPHIC AES EVALUATION

What About Recent CPAP Attacks? To obtain a fair comparison, we use parameters
equivalent to those used in the state-of-the-art, that typically achieve an error probability of
about 2740, But to take into account recent attacks in the CPA” model [LM21] on several FHEs
(including TFHE) [Che+24a; Che+24b], we also give execution times of our approach with a
example parameters set achieving an error probability of 2712% (Table 5.2). When running with
such parameters, an AES evaluation takes about 463 seconds on our machine, still using a single
core (see also Table 5.4). Although more optimal parameters may be found, this timing also
illustrates that achieving CPAP security may have a significant cost on FHE performances. At
this point, we leave that cost mitigation as a future work.

Table 5.4: Different evaluation timings of Hippogryph for different setups.

Machine | # cores | per | Timings (s)
laptop 1 2—10 32
laptop 1 2128 463
laptop 6 210 4.6
server 32 2—10 1.1

5.7 Conclusion

In this chapter, we combined the strengths of both Boolean and arithmetic representations to
develop a framework enabling homomorphic conversion between the two. This approach proved
effective: we managed to construct the fastest homomorphic implementation of AES currently
available in the literature.

Although the focus here is primarily on AES, this work represents a first step toward resolving
the common tension between Boolean and byte-level representations when executing algorithms
over TFHE. Beyond achieving “the fastest AES-over-TFHE,” our method could also be used
for implementing other block ciphers of similar SPN (for Substitution-Permutation Network)
structures in transciphering applications.

Transciphering is the central theme of the next chapter. While block ciphers were the focus
here, the following chapter shifts attention to stream ciphers as alternative solutions.

76

Chapter

ﬁ Better Transciphering with
Transistor

In the previous chapter (Section 5.1), we have presented a technique called transciphering to
adress the challenge of ciphertext expansion, common with all the FHE scheme. For example,
a plaintext message of a few kilobytes can require tens or even hundreds of megabytes of data,
making the processing of large data sets impractical. While compression techniques can help
reduce the expansion factor in TFHE ciphertexts, the encrypted data still remains an order or
two of magnitude larger than the original plaintext.

Transciphering consists in encrypting the data using a symmetric encryption cipher, and
only encrypting the key of this cipher using the FHE scheme. Then, the server can evaluate
the decryption algorithm of the symmetric cipher homomorphically to produce usable FHE
ciphertexts. More information on transciphering is given in Section 5.1.

While Hippogryph, our implementation of homomorphic AES we introduced in previous
chapter, could in theory be used for such transciphering task, the performances would not be
acceptable for large volume of data (which is the use-case targeted by transciphering). We would
rather have a symmetric cipher designed specifically to interact well with the FHE scheme.
An abundant literature on the topic has appeared during the last few years, leading to the
development of new families of ciphers tailored for the different homomorphic scheme on the
market.

In this chapter, we present Transistor, a stream cipher optimized for transciphering with
TFHE. This design is the outcome of a careful study of the constraints and advantages specific
to achieving efficient homomorphic evaluations with TFHE. In particular, we argue that oper-
ating on elements of F),, where p is a small prime (4-5 bits), is a good choice for leveraging
the full potential of TFHE’s programmable bootstrapping: we chose p = 17. This choice is
independent of the data format supported by the application running on the server, as changes
of representations are easily feasible through bootstrapping [Ber+23a].

The design of Transistor has combined two very different challenges: ensuring security (in
the sense of “traditional” cryptographic security), while being evaluable efficiently in the homo-
morphic domain. This thesis being about the development of efficient homomorphic operations,
we mainly present the latter aspect in this chapter. A full version of this work is available
in [Bau+25|, giving a more complete vision of the other aspect of the design. In particular,
we present a careful analysis of the noise evolution throughout the homomorphic evaluation
of Transistor, to fine-tune the TFHE parameters for optimal performance. Our homomor-
phic implementation of Transistor significantly outperforms the state of the art, achieving a
throughput of over 60 bits/s on a standard CPU. This represents a factor 3 speedup compared
to FRAST [Cho+24], the previous fastest method, while also achieving a considerably lower error
probability and eliminating the need for an expensive initialization phase.

The chapter is structured as follows. Section 6.1 discusses the design constraints for a stream
cipher intended for use with TFHE, along with the design choices we made. The specification
of Transistor and the reasoning behind its design is detailed in Section 6.2. Section 6.3
provides a brief high-level summary of the security implications. Finally, Section 6.4 details the

7

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

homomorphic implementation of our scheme, providing performance metrics and benchmarks.

6.1 Constraints for a TFHE-friendly Stream Cipher

TFHE Operations. TFHE enables the evaluation of both linear functions and look-up tables
on encrypted data, each offering complementary properties.

Linear operations in TFHE are highly efficient but contribute to an increase in ciphertext
noise. Specifically, when performing a linear combination of ciphertexts cy, ..., ¢, with constant
coefficients aq, ..., a,, the noise variance increases in proportion to the squared fo-norm of the
coefficient vector, i.e., Y7 ; a?. Therefore, to optimize efficiency and control the noise growth,
a TFHE-friendly cipher can make greedy use of linear operations while minimizing the norm of
the coefficient vectors to limit the resulting noise.

Conversely to linear operations, the programmable Bootstrapping (PBS) is a slow operation,
but it allows the computation of any (small-precision) function chosen by the designer while
reducing the noise in the ciphertext to a nominal level at the same time. Therefore, while we
should minimize the number of these operations for the sake of efficiency, they are essential for
introducing non-linearity into the cipher and limiting the noise growth throughout the execution.
In practice, within our context, the use of PBS introduces further constraints which we address
below.

The arrangement of operations. The PBS produces ciphertexts with a nominal noise level,
which is typically lower than that of the input ciphertexts but still significantly higher than the
noise in a fresh ciphertext. This implies that if the input bits are fresh encrypted data, they can
undergo complex linear operations (specifically with potentially high f3-norms). In contrast,
the linear functions applied to the outputs of each PBS should involve somewhat limited linear
operations in their resulting fo-norms in order to limit the noise growth.

The size of the plaintext space. The choice of the plaintext space Z, has a significant
impact on the PBS. Indeed, execution time of the PBS grows exponentially with the number of
bits of p, which is therefore usually limited to a few bits. Although some recent works ([GBA21;
Chi+21; Cle+22; KS23]) introduce more sophisticated techniques for efficiently evaluating larger
LUTs, their performance in terms of bits per second remains less favorable compared to using
lower precision.

The parity of the plaintext space. Following the general line of work of this thesis, we
chose an odd plaintext modulus p to get rid of the negacyclicity problem. But using an odd
modulus may seem unsuitable for manipulating bits or groups of bits. Indeed, it may lead to
data expansion, as an element of Z, cannot perfectly encode a group of bits. To mitigate this
issue, one can select an odd p that is slightly larger but close to 2¢ for some ¢, allowing for the
efficient embedding of ¢-bit chunks into elements of Z,,.

Our design choices.

We deduce the following guidelines for our design:

1. The plaintext space of the scheme will be reduced to a few bits to take advantage of the
relative speed of the PBS at small precision. Specifically, we chose p = 17 which meets our
constraints as being odd (no negacyclicity) and the closest to a low power of 2 (thus well
suited to encode nibbles of data). Besides, letting p be a prime number eases the design
and security analysis thanks to the field structure of Z, = [,

78

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

Moreover, operating in Fi7; does not constrain the server-side application to this field.
Once the server retrieves the homomorphic ciphertexts, they can be efficiently converted
to any other space with a bootstrapping. We elaborate more on this point in Section 6.4.2.

2. The non-linearity comes from a layer of S-boxes, each computing a function F, — F,
giving rise to one PBS evaluation. Given our fixed choice of p, the number of PBS per
element of the output stream represents the main performance metric which we search to
minimize.

3. The initial key material (stored as fresh TFHE ciphertexts) can go through complex linear
combinations before hitting the S-box layer.

4. Each S-box output should only go through lightweight linear operations (i.e., with low
lo-norms) before undergoing another PBS in order to make the noise in the input of the
PBS sufficiently low to ensure correctness.

5. Each S-box output should only go through lightweight linear operations (i.e., with low #5-
norms) before being released. This way, the TFHE ciphertexts obtained after the stream-
cipher decryption keep a noise level as close to nominal as possible.

6.2 Description of Transistor

Bringing everything together, we designed the stream cipher Transistor. Its overall structure
is presented in Section 6.2.1, its details are explained in Section 6.2.2, and the influence of noise
is discussed in Section 6.2.3. A reference implementation can be found at https://github.
com/CryptoExperts/Transistor/.

6.2.1 Overall Structure

Usage. Transistor is a stream cipher that generates a keystream consisting of elements from
F, = Fy7, referred to as digits. It is intended for transciphering, i.e., for the type of protocol
we summarized in Section 5.1. More precisely, a 128-bit master key and an IV are used to
initialize the internal state of Transistor using a PRF (namely, SHAKE [NIS15]), as suggested
in [BGO7]. This initialization is only performed on the client side, and in particular is not
evaluated homomorphically, meaning that its cost is negligible. On the other hand, it ensures
for example that related IVs cannot be exploited. The entire resulting internal state is then
encrypted using TFHE and sent alongside the ciphertext. This ciphertext is obtained by casting
the plaintext message to a string of digits of IF,,, which is added digit by digit to the keystream
produced by Transistor using the group law of [F,,.

Internal State. The overall structure of Transistor is outlined in Figure 6.1.

The idea is to generate two pseudo-random sequences with a very long period using two
distinct LFSRs. One of them generates whitening subkeys, while the other acts as a sort of key
schedule. The output of the latter is fed into a Finite State Machine (FSM) with its own state,
and which operates on it using non-linear operations. We thus have the following components:

« a register of 16 elements of IF,, (the FSM state),

 a Linear-Feedback Shift Register (LFSR) over F, (the key schedule or key-LFSR K) of
length || = 64,

o an LFSR over [, (the whitening LFSR W), of length |W| = 32,

« a non-linear round function from IF'},G to itself (the round function), and

79

https://github.com/CryptoExperts/Transistor/
https://github.com/CryptoExperts/Transistor/

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

l w (whitening LFSR) } Z

o

l K (Key schedule) } H 16 SD SR MC T
——{ FSM state §

(a) General structure (rectangles correspond to registers).

| |

LIRE] y

L] |
{E=EHE]

(c) SR. (d) MC. (e) ¢.

oo

Figure 6.1: A high level view of Transistor.

o a filter ¢ : IE“}D6 — IE*‘% that extracts 4 digits from the FSM.
The FSM state is initialized to all zeros, and each LFSR is initialized using digits derived
from the 128-bit master key and IV using SHAKE [NIS15].

Security Claim. Transistor is a stream cipher providing 128 bits of security, meaning any
attack should require at least 2'?® elementary operations, assuming no more than 23! digits
(about 1 GB) are generated with each IV. We allow up to 2'?® digits in total per key, corre-
sponding to the multi-initial-state setting.

6.2.2 Detailed Description

Obviously taking inspiration from the AES, the state of the FSM is organized into a two-
dimensional array of size 4 x 4, where each entry corresponds to a digit in F,. With this
representation, the successive operations applied to the state can be defined as follows.

SubDigits (SD) is an S-box layer: the permutation 7 is applied on each digit.
MixColumns (MC) applies to each column an MDS matrix M over F,,.
ShiftRows (SR) rotates the i-th row by ¢ positions to the left.

Filter (¢) takes 4 digits from the state and returns them.

In what follows, we provide a more detailed description of each step, using the notation
summarized in Figure 6.2a. The keystream output at clock ¢ > 0 consists of a tuple Z; € IF?;,
called a block. The internal state of the FSM, just before the filter is applied, is denoted by
X: (so that Sy = ¢(X:)). As a consequence, Xy = SD (K;y1 + (MCoSR(X}))), where K; is
obtained by concatenating 16 successive digits generated by the key-schedule LFSR . The
FSM is initialized with the all-zero value and its initial state is denoted by X_; := 0.

S-box Layer (SD). We let 7 be defined by its lookup table:
m=[1,12,6,11,14,3,15,5,10,9,13,16,7,8,0,2, 4] (6.1)

so that 7(0) = 1, 7(1) = 12, and so on. It has the following polynomial representation, and is
thus of maximum degree:

m(z) =1+ 4a' + 1322 + 723 + 162 + 152° 4 527 4 528
+ 1127 + 13219 + 122" 4 13212 + 152 + 215 .

80

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

0[1[2]3
K
I!ﬂl St o 4]5[6]7
% 819 10|11
Xy SR }—){MCP % SD }thﬁ’l 12[13[14]15
(a) Notation throughout clocks. (b) Numbering in the FSM.

Figure 6.2: Our notations. Note that the numbering of the digits differs from the one traditionally used
for the AES.

It was chosen by enumerating all APN permutations of Fy7, i.e., all permutations A such that
the equation A(z + a) = A(z) 4+ b has at most 2 solutions z for all @ # 0 and all b. Then,
we selected m among those that offer a good balance between minimizing the number of pairs
(a,b) for which the previous equation has exactly two solutions, and minimizing the maximum
modulus of the Walsh spectrum (see the full article [Bau+25]).

Linear Layer (MC). We opted for a 4 x 4 Maximum Distance Separable (MDS) matrix to
ensure optimal diffusion. The matrix we chose is

2 1 1 1
M—[} 0 :f]. (62)
1 -2 —1 1

We verified that there is no MDS matrix in Fy7 with coefficients in {—1,1} by exhaustively
testing all such matrices. As we were interested in MDS matrices with minimal £5-norm and we
were able to find during the initial experiments matrices with a squared fs-norm of 7, it was
evident from the definition of the ¢5-norm that matrices with minimal #5-norm could not have
coefficients « with |z| > 2. Thus, by testing all matrices with coefficients in {—2,—1,1,2}, we
found a total of 30 720 MDS matrices with an fo-norm of 7. We selected M for its symmetries,
particularly because it is its own transpose.

Filter. The filter function ¢ maps IF},G (i.e., the full FSM state) to a tuple (a, b, ¢, d) in IF?). As
summarized in Figure 6.1e, we have that a, b, ¢ and d correspond to the digits of the FSM state
with indices 4, 6, 12, and 14 respectively (using the numbering from Figure 6.2b).

LFSRs. The whitening LEFSR W and the key schedule LFSR K are simply LFSRs over F, of
maximum period, and have length 32 and 64 respectively. We obtain a maximum-period LFSR
over [} using the coefficients of a primitive polynomial as the taps. More precisely, we used the
SageMath implementation of the finite field IF,», which resulted in a pseudo-Conway polynomial.
The output of the LFSR is taken from its last cell.

More precisely, an LFSRs of length ¢ at time ¢ is a list of digits zf,...,z}_; that is clocked
as follows:

t+1 -1 ¢t
L.oxg —> 2o Tici,

2. att —at for0<i<d,
3. the output is z}_,,

where C' = (¢;)o<i<e is the list of its taps, each being a digit of Fi7. We define clockc to be the
function applying the operations above to a list z, ..., xi_l to update it, and returning 372—1-
For the key schedule I, we use the following taps:

C(K) ={9,4,6,4,8,6,6,16,3,9,15,12,8,12,11,4,4,8,1,8,8,9,4,6,6,7,6, 3,
16,14, 14,6, 10, 15, 14, 13,10, 1,1, 10, 13, 11, 14, 10, 7, 4, 15, 8, 16, 3, 13,
14,15,16,3,16,9,3,6,12,15,9,12,3} ,

81

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

and for the whitening LEFSR W we use

COW) = {8,14,14,14,1,6,12,10,14,14,14,5,2,5,6,13,6, 15, 14,3,
13,16,1,13,9,1,7,15,13,6,14,3} .

Master Key Processing. We generate the digits in K first, and then those in W. To generate
them, we concatenate the 128-bit long master key with an IV and then a byte set to 1. The
result is fed into SHAKE128, and the output byte stream of this primitive is used to generate
digits of F17 using rejection sampling: if a byte x is equal to 255, we discard it; otherwise, we
generate the digit |z/15]. Since 15 x 17 = 255, this results in an unbiased transformation.

6.2.3 Controlling the Noise Evolution

We first detail the implementation of each building block of the scheme using TFHE, as this is
essential to justify our design choices and to understand the evolution of the noise throughout
the cipher. We then use this discussion to explain how the noise influences the overall security
and efficiency of Transistor.

LFSR. A naive approach for implementing an LFSR homomorphically would be to maintain
an encrypted state, and update it by computing a linear combination with the feedback co-
efficients. However, this method would cause the noise in the state to accumulate over time,
necessitating periodic use of PBS operations to refresh and control the noise growth. For this
reason we introduce the principle of the silent LFSR. Every output of an LFSR is a linear com-
bination of the digits in its initial state. By computing on the fly the coefficients of these linear
combinations in clear, we can evaluate the output of the LFSR at every clock cycle without
updating an encrypted version of the internal state. This way, the noise variance in the output
of the silent LFSR remains stable over time. This principle is comparable to the approach of
FLIP [Méa+16] and follow-up works, whereby a key state is queried without being updated.

To bound the noise variance in the output of the silent LFSR, we consider the worst-case
scenario in which all the coefficients in the linear combinations are of maximal absolute value,
ie., %.1 The resulting noise variance is thus equal to the original noise variance multiplied by
the worst-case squared fo-norm. Specifically, in the output of the key schedule LFSR K and of

the whitening LFSR W, the noise variances U,ZC and 0'12/\, satisfy

1 p—1

2 2
p_
ot <l (P57) ohen and ofy < (P57) o (63)

where o2, is the noise variance of the encrypted key material in the LFSRs.

SubDigits. Each digit of the state of the FSM goes through a PBS that evaluates the permu-
tation 7. All PBSs can be evaluated in parallel for higher speed. We denote by o354 the noise
variance at the output of SubDigits for encrypted digits.

Shift Rows. Since each digit in the state is encrypted in a separate ciphertext digit, this step
involves simply rearranging the ciphertext digits within the state. Consequently, it incurs no
additional noise growth and no performance impact.

! Constant coefficients of F,, are encoded as integers of the interval [— 21, 2-2] to minimize their absolute value

2
and hence their impact on the noise.

82

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

! i

2 2 2 2
ﬁ 4 Oout = 0w + 0
w (whitening LFSR) ‘ w ou w PBS Z;

[O

2
Ofresh

1 i o]
— ok +ome
K (Key Schedule) ‘ ¥ SD : SR

J 2 = e 2 2
O OPBS OPBS
2
Ofresh ﬂ i i
2
ImC

Figure 6.3: Ewvolution of the noise variance in a homomorphic evaluation of Transistor. Operations
involving PBSs are in blue and dashed. The gauges allow to visualize the evolution of the noise on a
logarithmic scale).

MixColumns. This operation involves a straightforward linear combination of the digits of
the state. The matrix M has been specifically constructed to minimize the ¢s-norm, considering
coefficients in F17. From the homomorphic perspective, this choice is crucial, as the variance of
the noise increases proportionally with the square of this £o-norm, that we denote Lyc. Namely,
the noise variance O',%AC after MixColumns satisfies a,%,lc = L%/IC . U%BS.

Sums. The output of MixColumns is then added to the next output of the LFSR to be injected
again into SubDigits. The noise variance after the addition step corresponds to the sum of both
noise variances. Similarly, the noise variance at the output of the scheme, referred to as o2, is
equal to the sum 012/\/ + J%BS.

Figure 6.3 illustrates the evolution of the noise variance throughout the operations of Transistor.
Building on the previous equations, the main constraints influencing the design of Transistor
are related to the noise variance at both the input of the PBS and the output of the scheme.
Specifically, the noise variance J,QC + U,%AC at the input of the PBS (i.e., at input of SubDigits)
must remain sufficiently low, otherwise it could lead to a high probability of PBS failure. Ad-
ditionally, the noise variance o2, = 03, + 0Bgg at the output stream must remain low enough
for subsequent applications, ideally as close as possible to the nominal noise variance at the
PBS output opg. In practical settings, we have ofgg > 02, the noise variances from both
LFSRs are negligible compared to O'%)BS. For example in our implementation, the noise mag-
nitude of ogesh is around 2'4, while the noise magnitude of opgg is around 2°2. Consequently,
02,4 ~ 0bpg which validates the second constraint. Similarly, the noise variance at the input of
the PBS is close to that at the output of MixColumns. The latter additionally remains low due
to the minimized ¢3-norm of the coefficients of the MDS matrix M, thereby validating the first
constraint.

To wrap up, the design of Transistor allows to control the evolution of the noise in the FSM
while getting a very low number of PBS per element. To complete our noise analysis, we need
to set the parameters of the TFHE scheme to ensure the correctness of the PBS. Concretely,
the noise J,QC + a%,lc at the input of SubDigits should be low enough to fail with a negligible
probability. Of course, these parameters must ensure that the PBS operates as fast as possible
while maintaining the security of the scheme. In Section 6.4.4, we detail our method for selecting
the parameters.

83

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

6.3 A Brief Summary of the Security Analysis

Transistor’s full paper provides an extensive analysis of the security of the cipher. Even if
these considerations are far from the topic of this manuscript, we provide in this section a brief
overview of this analysis. We refer to the full paper [Bau+25] for the developments of the proofs.

Time-Memory-Data Trade-Offs To dimension the size of the LFSR, we computed a bound
to ensure that exhaustive attacks are out of reach even when leveraging trade offs with pre-
computation and storage.

Using K = 64 and W = 32, the length of the keystream generated from the same key is
limited to 23! digits. As a result, TMDTO attacks have a time complexity of 22?6 in the single
IV-setting, which drops to 2'30 when keystreams generated from 230 IVs are available to the
attacker.

Guess and Determine In this kind of attacks, the attacker links the FSM state X; to the
filter output Sy and try to guess the key schedule Kj;.

Based on an analysis of the filtering procedure of Transistor, we showed that in total
the attacker has to guess %UC | digits, leading to a complexity p%“q ~ 2196 without taking into
account the whitening LFSR. If we consider it, the attacker first has to guess its content, leading
to an attack with complexity p%"q*‘W' A 2294,

Three consecutive outputs are statistically independent of the secret key The basic
strategy in (fast) correlation attacks against stream ciphers consists in recovering some infor-
mation about (a part of) the initial state of the cipher from the knowledge of the keystream.
In this context, an important quantity is the smallest length of output sequence (S;)ien that
can provide information on the sequence produced by the key-LFSR. In the paper we prove
that this length is 4, that is to say 3 consecutive outputs are statistically independent of the
secret key. This is a very good performance with respect to the state of the art: the only other
cipher with this property is Rocca [Sak+21, Section 4.5]. However, in this case this property
has been derived from an automatic search method, while the structure of Transistor enables
us to derive this argument in a very simple way from the MDS property of MixColumns.

(Fast) Correlation Attacks Using Biased Linear Relations Our paper also provides
an estimation of the minimal data complexity required to recover the internal state of the
key-register from the knowledge of the output sequence (S;)ien, given that at least four con-
secutive outputs (St, S¢i1, Sti2, St43) need to be considered together. Applying the so-called
Xiao-Massey lemma [XMS88; Bry89|, it is possible to see that as soon as the key-LFSR and
the considered segment of the output sequence are not statistically independent, there exists a
biased linear relation between the digits of these two sequences.

In the paper, we exhibit an upper bound on the correlation of such linear relation. This
bound depends on the minimal number of active S-boxes over n rounds, as well as the modulus
of the Fourier coefficients of Transistor’s S-box. We show that the design of our S-box brings
the correlation down to a value small enough so that the amount of keystream that the attacker
has to observe exceed the limit of 23! digits fixed by TMDTO trade-offs.

Linear Distinguishers Another type of attack studied in the paper is linear distinguishing
attacks [MS88; CT00; CJS01; Tod+18]. These attacks do not recover the initial state of the
key-register, but the counterpart is that they can use together several keystream segments
produced from multiple initial state. They consist in exhibiting a biased linear relation among
the keystream digits. Such a relation is typically derived from a parity-check equation for the
key-LFSR, defined by the multiples of the LFSR feedback polynomial.

84

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

In Transistor’s design, this polynomial has been chosen so that it shows good properties
regarding the utility of these parity-check equations. The conclusion of our analysis is that such
an attack would be more expensive than an exhaustive search for the key .

The full security analysis also takes into account algebraic attacks; such that Grobner basis
or the use of annihilators of the filtering function.

6.4 Performances of Transciphering with Transistor

This section focuses on the performances of transciphering with Transistor. We first address
the wrapping of a (Transistor) symmetric key as a compact set of TFHE ciphertexts for which
we additionally introduce a trade-off between bandwidth and computation. Next, we explain
how to manage different data representations to be able to fit with the input format of the
server application. We then provide a detailed description of the homomorphic evaluation of
Transistor. We finally give some implementation benchmarks and comparison to the state of
the art.

6.4.1 Key Wrapping and Bandwidth in TFHE Transciphering

Assume one wants to generate a fresh TFHE ciphertext vector (cy,...,¢) for a plaintext vector
(my,...,my) € Z;, where ¢; = (@i, .., Gin, b;), for every i € [1,t]. Since the a; ;’s are uniformly
sampled at random over Z,, a folklore trick is to generate them pseudorandomly from a seed.
We get the following compressed encryption procedure (where A denotes the security level in
bits):

CompressEncrypt(s,my,...,my)

1. Sample seed < {0, 1}

2. Expand ((a;j)1<j<n)i<i<t < PRG(seed)

3. Vie [l,t}: b; Z?:l aij - sj +m;+e; with e; < X,

4. Return (seed, by, ..., b:)

Recovering standard TFHE ciphertexts ¢y, ..., ¢; from the compressed form (seed, by, ..., b;)
is simply done by expanding the a; ;'s from seed. The size of the obtained compressed ciphertext
vector is A + t - logy(q) against ¢ - (n + 1) - logy(g) for a standard TFHE encryption, meaning a
compression by a factor about (n + 1).

This compressed TFHE encryption method can be applied directly to transmit homomor-
phically encrypted data from the user to the server. Alternatively, it can be combined with
transciphering to encrypt a symmetric key. The resulting bandwidth requirements and the cor-
responding plaintext-to-ciphertext expansion factor are summarized in Table 6.1, where they
are further compared with the naive (uncompressed) TFHE encryption. In particular, for
Transistor, a wrapped key is of size A + (|K| + |[W]) - logy(¢), (which in our case gives 784
bytes) for a security of A = 128 bits (target security of Transistor), the standard choice of
q = 2% (which we use in our implementation) and |K| + |W| = 96 per the specification of
Transistor (see Section 6.2). This fixed cost is hence very quickly amortized while the amount
of data to encrypt grows. Moreover, this approach can be applied to the server keys as well,
which are actually encryptions of the secret key’s bits. We took this optimization into account
in our estimations of the server key sizes in Table 6.4.

85

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

Table 6.1: Bandwidth of homomorphic ciphertexts (in bits).

Approach used Naive Compressed Transistor
Fixed cost 0 A A+ (K] 4 W) - log,(q)
Per message in Z, (n+1) - log,(q) log, (q) log, (p)

Expansion factor

(n+1) - log,(q)/log, (p)

log, (¢)/log, (p)

1

Compressing further.

We introduce hereafter a tweak to compress a TFHE encryption

further than the folklore compression. By definition of the TFHE encryption process, the least
significant bits of the body b; = Z?:1 a;j - sj + m; + e; are randomized by the error e; and
can hence be discarded without loss of information. We can thus tweak the above compressed
encryption process by returning (seed, Try(b1), ..., Try(b;)) where Try(-) denotes the truncation of
the £ least significant bits. To decompress such ciphertexts, besides pseudorandomly generating
the masks from the seed, one just needs to pad the truncated bodies with ¢ bits to 0. By the
randomness of the mask, the effect of this truncation plus 0-padding is to add a uniform random
error of £ bits to the body, namely an error of standard deviation:
(2@ o 1)2 B 22@

2 20
=~ — ~0.08-2*.
loh 15 B 0.08

This optimization comes in two flavors:

1. The “free” variant. The number of truncated bits ¢ is selected to have a small impact on
the noise distribution. For instance in Transistor, the noise of the fresh ciphertexts is
summed with the noise coming from the FSM. Thus, we can compute £ to keep 012/\, < O'%)BS.
Our experiments shows J%)BS = 252, 50 running the numbers we find that we can truncate
up to £ = 19 bits, allowing to reduce the volume of the TFHE ciphertexts to send by a
factor 1 — % ~ 0.7.

2. The communication-computation trade-off. In this variant, one selects a high value of /.
The truncated body should at least contain log,(p) bits to keep the plaintext information,
plus a margin of a few bits in order to remain bootstrappable. Denoting this margin J, the
truncated body should be of at least logy(p)+6 bits and £ can be up to log,(q)—(logy(p)+9).
Taking the maximum level of truncation, inducing the maximum level of bootstrappable
noise, implies some adaptation of the underlying homomorphic computation. Specifically,
it should start with applying a noise-reduction bootstrapping to the decompressed cipher-
texts before performing the original evaluation. We hence obtain a trade-off with reduced
bandwidth against additional bootstrappings.

In the context of transciphering with Transistor, the trade-off provided by the second option
gives rise to an initialization procedure which consists in decompressing and bootstrapping the
wrapped key.

This kind of compression has been more extensively studied in the concurrent work [Bon-+24].

6.4.2 Transciphering vs. Data Representation

Managing data representation is a common challenge when working with TFHE. Since this
scheme is only efficient at very low precision, an abstraction layer is required to construct
practical data types (e.g., 8-, 32-, or 64-bit integers) from smaller encrypted chunks. Com-
mon constructions include radix-based decompositions and Chinese Remainder Theorem (CRT)
representations, leading to different efficiency trade-offs. Carry propagation in radix-based rep-
resentations is notoriously slow due to the large number of required bootstrappings, while CRT
representations impose constraints on feasible operations. These constructions have been studied
in [Ber+23a].

86

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

As a result, there is no universal representation that is optimal for all homomorphic oper-
ations. Thankfully, the representation of data in the transciphering algorithm can be chosen
independently of that of the homomorphic application running on the server. If the represen-
tation in Z, does not suit the application, the server can convert the ciphertexts to the desired
representation before running the application. We stress that this additional step of conversion
would be necessary for any transciphering algorithm, as the data format desired in output of
transciphering is completely application-dependent.

As a concrete example, assume that the data to be encrypted (i.e., the input to the homo-
morphic computation) consists of elements from Zg. The overall transciphering process unfolds
as follows. On the client side, the plaintext is first embedded from Zig into Zi7 before being
encrypted using Transistor. On the server side, the keystream is homomorphically generated
and then used to homomorphically decrypt the ciphertext. This results in a TFHE encryption
of the original plaintext, now embedded in Z7, meaning that the plaintext space for the TFHE
encryption is Zj7. A programmable bootstrapping (PBS) operation is then applied to switch
the plaintext space from Zi7 back to Zig.

In terms of computation, this process adds one PBS per Zjg-element of the original plaintext,
in addition to the four PBS per element required for keystream generation with Transistor.
Moreover, embedding Zig into Zi7 increases the size of the encrypted data by a factor of 1 +
1/16 = 1.0625.

This approach can be generalized to address other plaintext representations. In particular,
for larger chunks of bits, the bootstrapping operation would allow to merge several elements
of Z16 (embedded into Z;7) into one element of Zy with ¢ > 4. On the other hand, one may
split an element of Zj¢ (or its Z17 embedding) into 4 elements of Zy using a PBS with multiple
look-up tables (“PBSmanyLUT?”) as proposed in [Chi+21].

6.4.3 Detailed Homomorphic Implementations

In the following, we provide a more detailed way of how we implemented the homomorphic
version of Transistor.

Homomorphic evaluation of LFSRs. The Transistor design involves two LFSRs oper-
ating on elements of Fi7. The standard way to implement an LFSR is to evaluate the linear
feedback function on the state at each clock cycle, thus producing a new element that enters the
state, while the state is shifted to output an element.

We suggest the silent LFSR approach for the homomorphic evaluation of LESRs. In this
approach, the encrypted LFSR state is immutable to avoid any noise growth in the underlying
ciphertexts (hence keeping the LFSR “silent”). We use the fact that every output element of the
LFSR can be expressed as a linear combination of the initial state. So, at each clock cycle, we
compute in the clear the coefficients of this linear combination and homomorphically evaluate
it on the immutable encrypted state. This process is depicted in Algorithm 9.

Homomorphic evaluation of Transistor. The complete homomorphic evaluation of a
round of on clock cycle of Transistor is depicted in Algorithm 10, using K.clock and W.clock
as subroutines (i.e., Algorithm 9 evaluated on the key schedule and whitening LFSRs). The most
computation intensive part of the algorithm is by far the evaluation of the PBS in SubDigits
which can be fully parallelized to reduce the latency.

6.4.4 TFHE Parameters

We discuss hereafter the selection of the different TFHE parameters involved in the homomorphic
implementation of Transistor. An extensive presentation of the TFHE parameters and their
role within the scheme can be found in Section 8.1.

87

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

Algorithm 9 LFSR.clock - Produce a pseudo random element of the state.
£ . Size of the state of the LFSR.
(u1,...,ur) : Encrypted initial state of the LFSR.

Input: (0) (0) . o o
(A7, ..., A7) ¢ Coefficients of retroaction in the definition of the LFSR.
()\gi), RN /\g)) : Previous coeflicients used in the linear combination.
Resul o Encryption of the i-th pseudorandom element of [Fy7.
esult: . .
()\§1+1)7 cee)\gﬂ)) : Updated coefficients of the linear combination.
o 0
/* Evaluation of the linear combination */

for k€ {1,...,¢} do

| 0 « SumTFHE(0(, ClearMul tTFHE (uy, A\))

end

/* Update of the next coefficients */
for k€ {2,...,¢} do

A A a0

end

/\§i+1) - Aéz) .)\50)

return o

Table 6.2: TFHE Parameters used in our experiments

Derr q Nshort k N Oshort | Olong Bpes | ps | Bks lks Ashort)\long

240 264 | 788 2 1024 | 247 214 223 1 24 3 131.8 | 128.9

2-128 || 964 | 774 1 2048 | 247 914 223 1 23 5 131.8 | 128.9

Figure 6.4 shows the ciphertext format at the different steps of the homomorphic evaluation
of Transistor. It shows that the manipulated ciphertexts can be of three different types: LWE
ciphertexts of dimension ngyort, LWE ciphertexts of dimension njong, or GLWE ciphertexts of
dimension k£ and polynomial degree N.

Optimization of the TFHE parameters. To generate a set of parameters, we use the
method developed in [Ber+23a]. Given the negligible noise contribution from the LFSRs, the
FSM can be modeled using the atomic pattern introduced in [Ber+23a] (specifically the instance
referred to as A(CY le)), which is a pattern of homomorphic operators taking a set of ciphertexts
in input, computing linear combinations of those ciphertexts and applying a programmable
bootstrapping to each of them. The FSM round in Transistor which composes a multiplication
by a constant matrix (MixColumns), followed by a bootstrapping step (SubDigits) is precisely an
instance of such an atomic pattern. The framework proposed in [Ber+23a] generates parameters
that guarantee a specified security level A\ for the LWE encryption and target error probability
Perr, While optimizing the PBS to be as fast as possible.

Table 6.2 shows the parameters used for our experiments, all ensuring 128 bits of se-
curity. The obtained security levels Aghort €t Along have been estimated using the lattice
estimator [APS15].

Encryption security. The security level (in bits) of the LWE ciphertexts is a function of
the modulus ¢, the dimension n and the noise standard deviation ¢. While no explicit formula

88

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

Algorithm 10 Transistor.clock - Produce r encypted elements of the key stream
K : the LFSR used for the pseudo-keyschedule and its state (cf Algorithm 9).
W : the LFSR used for the whitening.

Input: 1’1’1 e .CL'L\/H

X = .. . : Encrypted state of the FSM
xm’l e xﬂ,\/ﬁ
Result: {Y = (y1,...,¥yr) : Encryption of r elements of the key stream

/* Compute the pseudo-key schedule and adds it to the FSM */
for i € [1,/m] do
for j € [1,/m] do
ki + K.clock()
Tij SUInTFHE(xij, k‘@j)

end
end
/* Compute SubDigits with a layer of PBS */
for i € [1,/m] do
for j € [1,/m] do
Tij PBS_TFHE(%Z'J‘, S)

end
end
/* Extract the output bits and whiten them */
(ylv"' 7y7') A gb(X)
for i € [1,7] do
w; < W.clock()
y; < SumTFHE(y;, w;)

end

/* Compute ShiftRows, (same as in clear) */
X «+ SR(X)

/* Compute MixColumns */

for i € [1,/m] do
for j € [1,/m] do
Zij 0
for k € [1,/m] do
Zij SumTFHE(zZ-,j, ClearMultTFHE(xkyj, MCZ,]C))

end

end
end
return Y

exists for this function, the lattice estimator tool allows to produce an estimation of this function
by simulating the main attacks of the literature [APS15], which we denote O (for security
oracle). The selected TFHE parameters are constrained to satisfy O(g,n,o) > A for both

(Q7 n, U) = (Q7 Nshort Ushort) and (Q7 n, U) = (q; Nlong Ulong)-

Correctness of the PBS. To compute the error probability pe., we have to evaluate the
variances occurring inside the programmable bootstrapping of the SubDigits layer. This reason-

89

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

IC (silent) W (silent)

LW E(niong 1

[mm}

LW E(niong 1

LW E(niong

LW E(Nong)

o |

]
5]
Y " TR

~
S
&
o
2

O
8]
[xa}

WE(nshort :

LW E(niong)

Figure 6.4: Types and shapes of ciphertexts in homomorphic Transistor. The SubDigits is broken down
into its elementary components

ing will be more detailed in Chapter 8 (with additional bits in Appendix A.1). Here, we provide
a short reasoning sufficient for our purpose.

In the following, we denote the maximum error probability of the bootstrapping by peyr :=
27", We aim to choose parameters such that the PBS outputs a correct ciphertext with proba-
bility at least 1 — perr. This translates to the following constraint:

1\ B 1 ?
ol gr < C(k) - (4}9) with C(k) := (\@ erfc_l(2”)> .

Under the Gaussian assumption, the noise in input of the BlindRotate is lower than erfc™!(27%)-

a?n_BR with probability 1 — 27", The above constraint thus implies that, with probability

1 — 27", the noise is lower than 1/4p which ensures the correctness of the PBS.
As |W| < |K|, we can check that we always have 02, < 02 pgs Which implies that the
output is always bootstrappable with correctness probability at least 1 — perr in the subsequent

bootstrapping.

6.4.5 Performances

We provide hereafter some benchmarks of our implementation of Transistor for two sets of
parameters tailored for two different error probabilities. We first consider per = 2740, which is
a common choice in the literature to benchmark homomorphic implementations. Our results
for this error probability allow a fair comparison with the state of the art. While such an error
probability theoretically allows transciphering to be error-free with a large amount of data with
good probability, some recent works have shown that non-negligible error probabilities could be
exploited by an adversary in some contexts [Che+24a; Che+24b]. Thus, we also provide another
set of parameters and associated benchmark for pe,, = 27128,

90

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

Table 6.3: Performances of our two instances of Transistor.

Derr Time for one Latency (one Throughput
PBS round)

240 11.9 ms 195 ms 83.84 bits/s

2128 15.28 ms 251 ms 65.10 bits/s

Table 6.4: Size of the server keys for the two considered sets of parameters.

Theoretical sizes Sizes for pey, = 2740 Sizes for pery = 27128
KSK Nlong - lks - 10gy q 49 KB 82 KB
BSK Nshort * IBS - logy q - N - 6.5 MB 12.7 MB
(k+1)

Our implementation relies on our customized version of tfhe-rs [Zam22c| which has been
adapted to support odd p (size of the plaintext space), that we described in Section 4.6.2. The
experiments were carried on a processor 12th Gen Intel(R) Core(TM) i5-1245U with 4.4 GHz.
Table 6.3 summarizes the obtained timings for the two sets of parameters. The throughput is
computed assuming that logy(17) bits are encoded on one element of Fy7. Encoding 4 bits on
each element would scale the throughput by a factor 4/logy(17) ~ 0.98.

Although our current implementation does not leverage the inherent parallelism of Transistor,
it is important to note that it can be easily parallelized across 16 threads. Specifically, during
the SubDigits steps, which dominate the overall runtime, the 16 PBS operations can be executed
concurrently. This parallelization would result in nearly a 16-fold reduction in total execution
time.

Without taking into account the server key(whose sizes are shown in Table 6.4), and using
compressed encryption (Section 6.4.1), transciphering 1 KB of plain data requires 1.78 KB of
data to be sent, instead of 64 KB. For larger amounts of message, the volume of the encrypted
symmetric key becomes negligible with respect to the message: for 1 MB of plain data, we use
1.0008 MB, and for 1 GB, this goes down to 1.000001 GB. The two sets of parameters yield the
same bandwidth consumption, but not the same running time as shown in Table 6.3.

By applying the “free truncation optimization" introduced in Section 6.4.1, we can reduce
the volume of the encrypted symmetric key by a factor 0.7. This is particularly useful when
transciphering a small volume of data (the volume of the encrypted key being preponderant). For
example, to transcipher 1 KB of data, using this technique decreases the volume from 1.78 KB
to 1.54 KB.

In Table 6.4 we provide the sizes for the server keys, namely the key-switching key (KSK)
and the bootstrapping key (BSK) while using the ciphertext compression technique described in
Section 6.4.1. Those keys are only generated and communicated to the server once (during some
user enrollment step).

6.4.6 Comparisons to the State of the Art
Comparisons with other TFHE-friendly ciphers.

In what follows, we compare Transistor with several of the most competitive state-of-the-
art schemes. Our results are summarized in Table 6.5. Although such comparisons must be
interpreted with care — due to differences in libraries, hardware platforms, and bootstrapping
error probabilities — they still offer valuable insights into the relative efficiency and trade-offs
of these approaches.

In [BOS23|, Trivium and Kreyvium were evaluated on a powerful AWS instance, which makes

91

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

Table 6.5: Performance of state-of-the-art TFHE-friendly ciphers (single-threaded when applicable).
Communication cost accounts for both the encrypted symmetric key and the evaluation keys.

Cipher Setup Latency | Throughput Communication Cost® Perr
Trivium [BOS23] (128 thr.) 2259 ms 121 ms 529 bits/s 640 B + 35.6 MB 240
Kreyvium [BOS23] (128 thr.) 2883 ms 150 ms 427 bits/s 1024 B + 35.6 MB T 240
Margrethe [Aras24] No 27.2 ms | 147.06 bits/s 64 MB < 271000
No 54.2 ms | 73.8 bits/s 128 MB < 271000
PRF-based construction [Deo+24] No 5.675 ms | 881 bits/s 32.8 MB = 8.9 MB + 23.9 MB 2764
FRAST [Cho+24] 25 s (8 thr.) 6.2 s 20.66 bits/s | 34.05 MB = 148 KB + 33.91 MB 2-80
Transistor No 251 ms | 65.10 bits/s | 13.54 MB = 780 B + 12.78 MB 2128

“In Margrethe, no keyswitching nor bootstrapping keys are required.
T Values recomputed from the data of the papers. For consistency’s sake, we applied the compression of
ciphertexts of Section 6.4.1 to estimate the communication cost.

direct comparison with our local experiments impractical. However, an important distinction
is that Transistor requires no setup phase, unlike these ciphers. Also, the implementation
optimizes the running time by switching between two sets of parameters, doubling the size of
the evaluation keys.

Margrethe [Ara+24] has low noise ratios (2 , compared to around 2712 for
Transistor. Its authors also report low latencies of 27 or 54 ms, and high throughputs of 147
or 73 bits/s (depending on the configuration). However, these come at the cost of much larger
sizes for the encryptions of the symmetric key. Indeed, the use of Vertical Packing mandates
that symmetric keys be encrypted under GGSW form, resulting in hundreds of megabytes. Al-
though an alternative (lifting from LWE to GGSW using circuit bootstrapping) could reduce
the transmission size, it would significantly degrade performance.

Similarly, Deo et al. proposed [Deo+24] a pseudorandom function whose security relies
on the hardness of the LWR problem [BPR12]. It enables a stream cipher—like transciphering
scheme, where each pseudorandom element in Z, (with p = 25) is produced using a single
bootstrapping. Their implementation reaches up to 881 bits/s on their hardware, surpassing
Transistor in throughput. However, as with Margrethe, this efficiency comes at the cost of a
significant increase in key size: their PRF requires 500 to 1000 elements encrypted in GGSW
form, which is much larger than the 96 elements in LWE form for Transistor.

The authors of FRAST [Cho+24] implemented it with tfhe-rs, like Transistor. It tar-
gets 128-bit security with an error probability of 278, On the same platform, our instance
of Transistor (with a tighter error bound of 27!?8) achieves three times higher throughput,
significantly lower latency, and does not require any setup phase—unlike FRAST, which involves
a 25-second setup. In addition, FRAST requires substantially larger evaluation key material, due
to its use of multiple derivatives of the PBS algorithm. Finally, no information is provided
regarding the output noise level of the scheme.

—15.3 or 2—21.9)

Comparisons with other homomorphic schemes.

TFHE yields very different trade-offs between the various performance metrics (latency, through-
put, bandwith consumption, ...), compared to other FHE schemes. In scenarios where through-
put is a priority, TFHE—and by extension, Transistor—is generally not the most suitable
choice. However, TFHE shines in use cases that require low-latency homomorphic computa-
tions and efficient evaluation of look-up tables (LUTs), thanks to its native support for fast
programmable bootstrapping. In the following, we provide a brief survey of some transciphering
approaches built upon alternative homomorphic encryption schemes.

For CKKS-based transciphering, we look at the AES evaluation using the so-called XBOOT
optimization proposed in [Niu+25]. While the reported amortized throughput significantly

92

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

outperforms that of Transistor, it comes at the cost of a much higher latency—153s and 236s
using 64 threads, compared to 251ms for Transistor running on a single thread. We observe
similar results for BGV-based transciphering. In this case we instead consider the optimized
evaluation of RASTA [Dob+18] presented in [Niu+25]. Using the same XBOOT optimization as the
CKKS variant, it also yields high latencies: 303s, again with 64-thread parallelism.

Lastly, FINAL [Bon+22] is another, more recent homomorphic encryption scheme based on
NTRU. Its bootstrapping is approximately 30% faster than TFHE’s, but it is not programmable,
and therefore does not support LUT evaluation. The works [MPP24; Con+22| implement the
stream cipher Filip using FINAL, relying on the Improved Filter Permutator paradigm, without
LUTS’ evaluation. The competitive performances of these implementations (resp. 159 bits/s
and 381 bits/s) comes with a trade-off in key size: encrypting the symmetric key requires resp.
215 MB and 200 MB, versus 4.8 MB for Transistor (uncompressed). This is mainly due to
the size of the key register in Filip (24 bits), while Transistor only requires the upload of 96
elements in Z;7 (around 400 bits).

6.5 Conclusion

Transistor is a new stream cipher design tailored to TFHE transciphering, that significantly
outperforms the state-of-the-art of TFHE-friendly stream ciphers. After analyzing the con-
straints of the TFHE setting in the context of a symmetric cipher, we designed Transistor by
combining an LFSR-based key schedule, an LFSR-based whitening, and a non-linear FSM with
an AES-like structure. We report implementation results of Transistor using state-of-the-art
TFHE, using a trick to implement silent LFSRs. This general structure can be easily adapted
to other contexts, and we believe it will find applications beyond TFHE.

One of the constraint of this design was that the cipher should work in a small plaintext
space. This was because the bottleneck in terms of running time was the evaluation of the S-box.
But what if we could extend the capabilities of TFHE and evaluates larger S-boxes, like in more
conventional designs ?

This is the point of the next chapter, where we propose a construction to accelerate the
evaluation of larger LUT.

93

CHAPTER 6. BETTER TRANSCIPHERING WITH TRANSISTOR

94

Chapter

7
I Accelerating Large Look-Up
Tables

In previous chapters, we have worked with relatively small plaintext spaces, with p taken no
bigger than 8 bits. The reason was that TFHE’s bootstrapping becomes very slow as p grows,
and is considered prohibitive beyond 6 bits. This puts a bound on the size of the Look-Up
Tables evaluable with the PBS operation.

One of the use-cases for evaluating large LUT is transciphering. As we have seen in Chapter
6, LUTs operations are the only way to evaluate non-linear operations homomorphically, that are
the key to ensure the security of the symmetric schemes used for transciphering. For instance,
the 8-bit S-box of AES have been quite challenging to evaluate in Chapter 4 and 5. Another
use-case would be to homorphically evaluate the activation function in a neural network, that
are intrisically non linear as well. A lot of literature about low-precision machine learning exists,
notably for 16-bit precision [Kos+17; Das+18], as well as 8-bit [Sun+19; Cam+20]. In a more
general way, a larger LUT operation would be a very useful operator in a generic framework of
compilation of homomorphic programs. We took inspiration from the literature about masking,
notably the line of work of [CRV14; GR16; Gou+17]. Their goal was to generate circuit repre-
sentations for S-boxes to construct efficient masked implementations. We use the same kind of
techniques for developing a new framework to evaluate large S-boxes using TFHE. It increases
the size of evaluable LUTs, which extends the capabilities of TFHE. We give an overview of the
performances of our method versus the classical PBS on Figure 7.1. A more advanced construc-
tion, called the WoP-PBS (for Without Padding Programmable Bootstrapping) also exists: we
present it and compare our work to it in Section 7.4.

Our method outperforms the vanilla PBS algorithm from 6-bit LUT and we extend our
experiments until 14-bit ones. In particular, we show better performances than the rest of the
literature (including the WoP-PBS) for a bit-size of 8, that corresponds to the size of the S-box
of AES.

After formalizing the problem, we give an overview of our method, that relies on a random
decomposition of the LUT into smaller ones, and explain how we evaluate those decompositions
homomorphically. Then, we explain in-depth the algorithms that produce these decompositions.
We finish by presenting the results of our experimentations, by comparing our work to the vanilla
PBS and to some constructions of the literature.

7.1 Context and Formalisation of the Problem
Formally, our goal in this chapter is to homomorphically evaluate a function denoted by
F: 7y — 77,

for an input space of size s™ possibly larger than what is efficiently achievable in the current
state of the art (to fix ideas, let us say greater than 256).

The operation of look-up table that TFHE natively offers (that is to say the PBS) only takes
one element of Zg in input and outputs one element of Zs;. To evaluate a function with two

95

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

8000 -e- Classical PBS

—=— Our Work: s=2
-e- Classical PBS
—a— Our Work: s=2

7000

i b
i /
| /
6000 { / o
{ 4 /
i . /
i o /
i / -
5000 : / /
i
i
i

@ 4000

! 3
H E
i
; H
: F
: ¢
i £
i
3000 H 1 Vi
i S
i’ -~/
II / /
/ ;
’ b 1
2000 L /
/ /
/
/

.
1000 - _

Time (ms)
«
.\-\

8 8
Bitwidth Bitwidth

(a) Linear scale (b) Logarithmic scale

Figure 7.1: Comparison of the performances of the classical PBS and our method. See Section 7.4 for
details about the experimental setup.

inputs 1 and xy from Zg, one can work in the ring Z,» and consider the value x1 - s+ z2 € Z,2,
turning the input space of the function from Z? into Z,.. Doing this reduces the problem to the
case of one LUT with a single input. The problem is that increasing the size of the input space
has a catastrophic impact on the performances.

Consequently, the metric to take into account to predict the performances is the value of s”.
This shows that one should either put a limit on the size of the base space Zg or on the arity n
of the function.

From a high-level perspective, our technique consists in decomposing the function F' into a
circuit of subfunctions from Zg to Zg, that are much faster than manipulating a massive input
of Z7.

7.2 Overview of the Method

To simplify the explanation, we first consider single-output functions (i.e., with m = 1) that we
denote by

/A
X = (20, ., Tn-1) — Y.

We generalize the technique to functions F': Z7} — Z7" with m > 1 in Section 7.3.2.

7.2.1 Building Blocks

Embedding in a prime field. Our method requires elements of Z; to be embedded in a
finite field. So, if s is not prime, we do not directly manipulate the values x;’s in the ring Zs.
Instead, we use our encoding method that we introduced in Chapter 4 and generalized to
the arithmetic case in Chapter 5. To match with the notation of this chapter, we call it a (s, p)-
encoding. Recall that this is simply an embedding of the ring Z, into a greater space F,, with
p > s. We choose p as the smallest prime number greater than s. As a consequence, we identify
this new space as the prime field F,, and we define an injective map function & : Zs; — TF,,.

96

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

Apart from the choice of p that is crucial for our method to work, the mapping £ itself can be
arbitrarily chosen. For the sake of simplicity, we choose the natural “identity” embedding:

E:ZLs— T,
T—x
As s < p, this always defines a valid injective map. In the rest of the paper, we will use x;

to denote indifferently the original value living in Zs and its embedding in F,. Moreover, we
replace the function f we wish to evaluate by its embedding in F:

f:Im(E)" = T,
X = (20, Tn1) = EF(E N x0), ..., E Han1)))

where £71 : Im(€) +— Zj refers to the function mapping the elements of F,, to the original
value of Zs they encode.

Construction of a pool of derived variables. Our method requires constructing a pool
of variables derived from the input of the function f. For reason that will soon be clear, these
variables should be linearly independent from the inputs. To achieve that, we define a notion of
atomict function of arity r as follows:

Definition 7.2.1. Let F, be the set of all functions from I, to F,, and r be an integer. An
atomic function of arity r is a function ¢ of the form

¢:F, > T,
r—1
(xo,...,xrfl) l—>w Zaj © Ty
=0
with ¢ € ,Fp and a = (aj)0§j<r S IF;.

If an atomic function is sampled at random such that) is non-linear, then its output is
linearly independent from the inputs with great probability.

Such an atomic function can be evaluated homomorphically using the native operations of
TFHE. The procedure is described in Algorithm 11.

A few remarks on this straightforward algorithm are in order:

e The algorithmic cost of EvalAtom can be boiled down to the cost of the final PBS, as the
other operations are linear so essentially free.

e The noise in the result is reset to a nominal level by the final PBS.

e The noise growth in the linear combination is exactly quantified by the norm of c. Trivially,
the standard deviation of the noise in the coefficients of the ciphertexts is multiplied by
le]].

Now, we define a notion of chain of atomic functions:

Definition 7.2.2. Let n, A € N. A chain of atomic functions ®,, 5 of basis n and length X is a
function defined as follows:

N e

($07 s 7ajn*1) = (:Ena s)xn-l—)\—l)

!This denomination is inspired by the notion of atomic pattern from [Ber+23a]

97

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

Algorithm 11 EvalAtom - Homomorphic evaluation of an atomic function
Fp: the field of embedding.

(w0, ..., zr—1) € F): the inputs of the atomic function in the clear.

Context: {

¢ : F), — Fp: the atomic function of arity r we want to evaluate.

(co,...,cr—1): the ciphertexts encrypting the inputs

Input:
P a = (aj)o<j<r € Fp: the coefficients of the linear combination of ¢
1: the outer function of ¢.
Result: c,: an encryption of z, = ¢(zg,...,z,—1)
c,+0
/* Evaluation of the linear combination */

for k€ {0,...,r—1} do
| ¢, < SumTFHE(c,, ClearMultTFHE(cy, o))

end
/* Evaluation of the final function % with a bootstrapping */
¢, < PBS_TFHE(c,,)
return c,
with

n+k—1
VEE{0,..., =1}, @nak = Op(20, - Tngr1) =V | D -y
=0

from a set of A atomic functions (¢r)o<r<r of arity (n + k)o<p<x and with (ag ;) o<k<r € Fp.
0<j<n+k

Concretely, the k-th link of the chain is an atomic function ¢ taking in input:

e the n inputs of the chain, and

e the k — 1 outputs of the previous links of the chain

Homomorphically evaluating a chain is done by simply calling EvalAtom (Algorithm 11) on
each link in the chain.
7.2.2 Core of the Method

Decomposition of the function. The goal of our method is to decompose the target function
f, using a chain of atomic functions ®,, , into a form:

t L

Vx € Z?, f(CL‘o, ce ,xnfl) = (,81‘7]' . xj) . ([ildzﬁk . $j> (71)
k=0

) =0

|
—

I
—

Il

o
<

I

where \,t € N, L =n+ X, B (resp. d;) € F, for 0 <i <tand 0 < j < L (resp. k), and
z; € ®p 2 (z0,...,2p—1) for n <i < L.

We present a method to construct such decompositions in Section 7.3. Now, we simply
explain how to evaluate it using the native operations of TFHE.

Homomorphic evaluation of the decomposition. To homomorphically evaluate this de-
composition of f, we need a few FHE operations:

o All the z;’s are produced by homomorphically evaluating the chain ®,, y, that is to say by
successive calls to EvalAtom.

98

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

o As every terms of the formula lives in Fp, the products plaintext-ciphertext (i.e. the prod-
ucts fi; - x; and d; j - ;) are simply evaluated using the native ClearMultTFHE operation.
The sums are very easy as well: they are done with SumTFHE.

e Evaluating the multiplication between two ciphertexts is trickier. One can use a PBS
with two inputs, but this would lead to poor performances. Instead, a trick appearing
in [Ber+23a] is to leverage the following property:

roy= 47 @ty - - (72)

Both squaring operations can be evaluated using a simple PBS. Evaluating two PBS on
entries of size p is significantly more efficient that one PBS of size p? (as illustrated by
Figure 7.1, doubling the bit-size of the input is devastating for the performances). We
could evaluate the multiplication by [4_1]p using ClearMultTFHE but that would lead to
a slight noise growth. Instead, we include it into the tables evaluated by the PBS. This
procedure is formalized in Algorithm 12.

Algorithm 12 EncryptedProduct - Homomorphic evaluation of a ciphertext-ciphertext prod-
uct

F,: the field of embedding.

Context: {])
x1, T2 € IF, : the inputs of the product in the clear.
Input: cq,co: the ciphertexts encrypting the inputs x; and xs.
Result: ¢’: an encryption of 1 - zo
/* We compute the sum and the difference */
o] — SumTFHE(cl, Cg)
oy < SumTFHE(c, MulTFHE(cy, [—1],))

/* Evaluation of the squares (we precompute the minus sign in front of the
second one) */

o' < PBS_TFHE(0y,z v 2* - [471])

o < PBS_TFHE(02,z + a® - [-47'])

/* Summing the square */

¢, < SumTFHE(o), 0%)

return c,

Finally, putting everything together, we obtain Algorithm 13 for the homomorphic evaluation
of the decomposition. We can estimate the cost of this algorithm by counting the number of
PBS it requires:

e) PBS to evaluate the chain,
e 2t PBS to evaluate the t ciphertext-ciphertext multiplications using Equation 7.2.

The total cost in PBS can thus be evaluated to A\ + 2¢.

7.3 Finding Efficient Decompositions

In Section 7.2, we have described the case where the function F' has only one output (m = 1).
If we want to evaluate functions with several outputs (m > 1), a trivial method would be to

99

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

Algorithm 13 Homomorphic evaluation of a decomposition

[= Fp : the function to evaluate.

(zo,...,n-1) € F) : the clear inputs of the function.

Context:
O, A = (¢0,...,0x-1) : the chain used to generate the decomposition
L=n+ A\

(co,...,Cn—1) : the ciphertexts encrypting the inputs

Input: (Bij)o<i<t € F;XL : coefficients of the left-hand linear combination of Equation 7.1.
: 0<j<L

(dij)o<i<t € IFZXL : coefficients of the right-hand linear combination of Equation 7.1.

0<j<L

Result: c,: an encryption of y = f(xo,...,2n—1)
/* Evaluation of the chain of atomic functions */
for k € {n,...,L} do
| ¢y < EvalAtom(¢y, (co,...,Cx-1))
end
cy <0
for i € {0,...,t—1} do

/* We compute the linear combinations with the (’s and d’s */

for j€{0,...,L —1} do
Yij < ClearMultTFHE(cj, Bzg)
7i; < ClearMultTFHE(c;, d;;)

end
0 < SumTFHE(Y,0, -, ¥ 1—1)

o < SumTFHE(Yjg, .-, ¥{ 1 1)

/* We compute the encrypted product using the trick of Algorithm 12 */
¢y < SumTFHE(c,, EncryptedProduct(o;, o))

end
return Cy

100

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

consider the m functions f; :) — F;, finding a decomposition for each one, and evaluating
them in parallel.

However, we found out that all the decompositions can be constructed using the same chain,
which allows to save a lot of PBS. In this section, we describe first how we construct an efficient
decomposition for the first output. Then, we show the intermediary results can be recycled to
construct the next ones for much cheaper that with full fresh decompositions.

7.3.1 Construction of an Efficient Decomposition for the First Output

For now, and as in Section 7.2, we only consider a function with one output f : F — [F,,. It can
be seen as the first subfunction of the whole function F': F — F}".

In the rest of the chapter, we denote by x(the i-th? element of Z7. 1t gives:

2y = {xO =@, 2l 0<i<s}

s

Construction of a Valid Decomposition

Before trying to find an efficient decomposition, let us try to construct a valid decomposition. We
start by choosing appropriate A and ¢ values and construct a random chain of atomic functions
®,, \ (we address the choice of A and ¢ later in this section).

Recall Equation 7.1. It can be rewritten as a matrix-vector equation, where each row of the
matrix corresponds to a different input of the chain:

y=A-p (7.3)
where:
ey = (yo,--- ,ysn,l)T € F;n is a vector containing the s™ outputs of the function f:
Vi € Zign,y; = f(xéi),...,xgll)
e B=(Bo,....0-1)" € IF;L is a flattened container containing the betas, such that:

Vi,j € Zy X L1, Bir+j = Bij -

e Ac FZ””L is the matrix defined by block as:

A= (A | A | ... | A1) with:
x[()O) . <di,x(0) xle . gdi’X(O)i
A; = xél)'@i’xm i ,di’xm (7.4)
A (x0T DY L T (D)

and: di = (dip, ey di,Lfl)-

Putting everything together, we can write the whole product of Equation 7.3, which gives:

2The sort order does not matter, so we can arbitrarily pick the lexicographical order.

101

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

Bo,0
tL .
70 Bo,L—1
i —
s" : = Ay Ay A1 _ (7.5)
e 1 Bt—.l,(]
Bi—1,0-1

To make the link with the notion of chain, we define the matriz representation of a chain:

Definition 7.3.1. Let ®,) a chain of atomic functions of basis n and length A. The matriz
representation of the chain ®,,) is a matrix of size s™ x (n + A) whose i-th row stores the
concatenation of the inputs and the outputs of the evaluation of ®,, on the input x(. Thus,
it can be written:

:véo) xglo_)l 20 xglo)/_l
Mat(®,, \) = GO %(.11) N :rffll €y XY
B IS R
where xfﬁrk = (ﬁk(xgi), . ,a:g_k_l) for 0 <k < MXand 0 <1< s™

This matrix can be seen as the concatenation of two blocks:
Mat(®,,) = (Triv | Eval)

where Triv is the trivial writing of all possible inputs of the chain (so all the elements of Zsn)
and each row of Eval corresponds to evaluation of the chain with the corresponding row of Triv
as input.

Using this notation, the matrix A can alternatively be defined as A =V O U, where:
e U is the matrix representation of the chain ®,, .

e V is the matrix defined by:
V=u-p’ (7.6)

where D is the matrix containing all the d;;’s:

dy doo ... dorL-1
d; dio ... dirn—1
p=| . |= S , € Fi<* (7.7)
d; 1 di—10 ... di—1,0-1

o [denotes the face-splitting product of Slyusar [Sly99], illustrated on Figure 7.2.

What we do in practice is sampling a random chain ®,, and a random matrix D and treat
B as an unknown. To check whether the pair (®, x, D) produces a valid decomposition of f, we
need to find a vector B satisfying Equation 7.5. For this, it is sufficient that Rank(A)#" (so full
row-rankness), which allows to perform a Gaussian elimination to obtain the value of the vector
B. If the matrix is rank-deficient, we sample a new chain and matrix and start the procedure

102

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

1
[ann a11b12 a11513J@12511 a12b12 a12b13
VOU= | a2ba1 a21b22 a21b23'a20b21 a22b22 a22ba3
az1b31 az1b3z az1b3z azabsr azabze azabss

Figure 7.2: Illustation of the face-splitting product.

again. Note that for A4 to be full row-rank, it is necessary (but not sufficient) that D be full
row-rank as well.

One of the strength of this method is that the pair (®, x,D) and the underlying matrix A
can be used for any function f. Indeed, the definition of f only impacts the target vector y in
the system. So once a pair (®, x, D) yielding a full row-rank matrix A has been found, it can
be used for any function f of same arity n.

Bound on the dimensions of A. We just showed that to produce a valid decomposition,
the matrix A needs to be full row-rank. As long as D is full row-rank, then the columns of
A are linearly independent with great probability so the only condition for full row-rankness is
that it should have at least more columns than rows. This gives the simple inequality for the

decomposition parameters:
s <t-(n+MN). (7.8)

To wrap up, the method to find a valid decomposition consists in drawing random chains
®,, » and random matrices D €]FEXL until the matrix A is full row-rank. As its columns are
products of results of random functions, linear relationships between them are unlikely and in
practice a solution is quickly found whenever the parameters satisfy Equation 7.8.

Performances of the search algorithm. Our experiments show very different time to find
a solution with respect to the value of n. Two phenomenons explain this variability:

e The GaussElimination algorithm has cubic complexity with the number of rows of A
(which is s™). The combination of both factors makes the computational cost of testing
one chain increase largely with the value of n. On Figure 7.3, we give the time of executions
3 of the algorithm for one chain.

o The probability that a random chain (associated with a random D) yields a valid decom-
position varies a lot, and seems intuitively inversely correlated with the tightness of the
bound of Equation 7.8. Thus, a trade-off to speed-up the search algorithm would be to
relax this bound by adding a multiplicative factor v > 1 on the left-hand side of Equation
7.8 to allow for more margin, which gives

v-s"<t-(n+A)

Our experimental results show that a value of v = 1.1 is enough to find a solution in less
than 200 iterations. The impact of v can be visualized on Figure 7.4. Increasing the value
of v comes to the cost of picking slightly larger values for A and ¢, which slows down a bit
the homomorphic evaluation of the decomposition.

3The machine on which we run the tests is a server equipped with an AMD Ryzen Threadripper PRO 7995WX
of 96 cores.

103

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

Average time for Gaussian Elimination (s) (log)

8 9 10 11 12 13 14
n (with s=2)

Figure 7.3: Average time to run GaussElimination in function of n, with s =2 and p = 3.

Still, the cost of finding one valid decomposition stays quite reasonable for values of n up to
14, which we picked as an arbitrary upper bound for the arity of the functions in our experiments
in Section 7.4.

However, in order to be able to optimize the speed of the homomorphic evaluation of the
decomposition, we need a cost model to quantify the quality of a decomposition. This allows
to generate several valid decompositions and select the best one. We define such a cost model
hereafter.

Selection of the Best Decomposition

In TFHE, the PBS is by far the slowest operation by several orders of magnitude. Thus, it may
seem that finding an efficient decomposition can be boiled down to reducing the number of PBS.
However, the speed of the PBS itself is dependent the parameters picked for the TFHE scheme.
Thankfully, extensive work has been done to try to optimize the parameters of TFHE in a given
context to minimize the running time of the PBS operation while maintaining the correctness
of the homomorphic computation. In the following, we explain how we select parameters in our
own optimization framework.

In Chapter 8, we present a tool to generate parameters sets for TFHE. Briefly, the elements
to take into account to select the right parameters are:

o the target security level A, that corresponds to the computational hardness of the under-
lying LWE instance,

e the error probability €, which is the probability that the noise overflows over some bits of
the message during the computation,

o the size of the embedding field p,

e the norms of the linear combinations the ciphertexts go through. Such linear combinations
happen in the computations of the atomic functions (||e;||), and in the evaluation of the
decomposition itself (||3;|| and ||d;||). In practice, we consider the worst one of all the
circuit Vpmaz-

Using our tool, we dynamically crafted a set of parameters for every candidate decomposition
we generated. For more details about the methods of selection, we refer to Chapter 8.

We can abstract the use of our tool by modelling the computational cost of each PBS in a
given decomposition by an oracle (which in practice corresponds to a call to our tool):

Cost(PBS) = O(\ €, p, Vmag) -

104

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

n=4, target=16

gamma = 1
n=5, target=32

n=6, target=64

1 12 13
Rank

n=7, target=128

Count
&

L

o
1B 20 21

22 23 24 25 26 27 28 29 30
Rani

n=8, target=256

=

60 61 62 63 64
Rank

n=9, target=512

200 200
75
s 175
150
150 150
125
25 125
S 100 s s
3 8 10 8 100
s 7 7
0 50 50
2 25 25
o 0 3
124 125 236 477
Rank Rank Rank
gamma = 1.05
n=4, target=16 n=5, target=32 n=6, target=64
g
160
0 140
5 120
100
W
2 2
3 8 80
EY
0
20
Y
10 2
o 1 ol
57 10 © 23 24 25 26 27 28 29 0 31 2 5 60 61 &2
Rank Rank Rank
n=7, target=128 n=8, target=256 n=9, target=512
200 200
73 175
150 150
125 15
g w0 3100
7 7 7
50 0 50
25 2 2
o 0
17 122 123 251 252 04
Rank Rank Rank
gamma = 1.1
n=4, target=16 n=5, target=32 n=6, target=64
0 0
50
w o
Y 0
o
50
g H
8 &%
20
20
10 1
ol 0
5 6 7 8 9 1 1 12 13 14 15 w2 % 2 61 62 63 63
Rank Rank Rank
n=7, target=128 n=8, target=256 n=9, target=512
175 200
75
150 175
150
150
125
125 25
100 v -
H 5 100 H
8 & 8 100
Ea
E 7
50 w ©
25 25 2
ol ol ol

126 127

Rank

128

255
Rank

(¢)y=11

Figure 7.4: Distribution of the ranks of 200 matrices A generated using our algorithm, with different
values of n and different tolerance values v. Increasing v to 1.1 almost guarantees to find a quickly find a
full-rank matrice. The experiments have been carried out for s =2, p =3 and a function with one single

output.
105

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

Now that we have a model for the cost of one PBS, we can simply estimate the cost of the
whole decomposition by multiplying this cost with the number of required PBS. This gives:

Cost = Cost(PBS) x #PBS
with:
#PBS =X+ 2t

For the sake of clarity, we can break down this last equation: the evaluation of the chain
takes A PBS, and the t products are evaluated in 2t PBS.

Wrapping up, we now have a way to construct valid decompositions for single-output function
by sampling random chains, and a way to estimate their cost.

7.3.2 Generalization to Several Outputs

We just explained a way to compute a function
7y — Zs.

Now, we generalize our technique to multi-outputs functions:
F 77— 77

The idea is to first evaluate the first output (that we denote fj) using the technique intro-
duced previously, and then reuse as much computation as possible to speed up the evaluation
of the m — 1 other outputs of F' (namely, the f; with & € {1,...,m — 1}). An obvious first
optimization would be to re-use the same chain to evaluate the A values (zy, ..., Zp+x—1), which
would save (m — 1) x A PBS. But, by taking inspiration from [GR16; Gou+17], we can push
this further.

Indeed, after having completed the evaluation of the first output, we dispose of several
variables that are linearly independent:

e the n fresh inputs of the function fy,
o the A random variables that we evaluated using the chain,
o the t results of products {p; }o<i<t, defined by :
no—1 no—1

V0§i<t07pi:(z ﬂij'%)‘(z dz‘j'ﬂ?j) (7.9)
=0 J=0

with ng = n + A.

This accounts for a total of n; = ng + ¢y variables that we can use as a new base. Now we
can pick a new value t1, which is bounded by Equation 7.10:

Sn S ni- tl (7.10)

If we compare with Equation 7.8, ¢; can be smaller than the previous value ty. Remember
than ¢; corresponds to the number of ciphertext-ciphertext products in the decomposition (that
each requires 2 PBS): so as we evaluate more outputs, the fewer PBS are required for each one.

We then follow the same procedure than for the first output: we sample a new random
matrix DY) e F;}XL and we construct a new matrix AD = y® Oy ¢ anth'”l where

UM is the matrix representation of the chain ®,, » augmented with ¢y columns containing the

106

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

corresponding results of products (p;)o<i<; and VI = (M . (DUNT. The matrix UM can be
defined as:

Yy — (U© plo)) € Fy M (7.11)

where P(©) ¢ IE‘;"”O, as explained previously, compiles the results of each products.

If AD is full-rank, it is then possible to solve the equation:

y = AW . g1 (7.12)

and construct a decomposition. The same procedure can then be carried out iteratively on the
rest of the outputs of the function F.

Algorithm 14 CreateDecompositions - Generation of the decompositions for a function F

Context: [, : The finite field of embedding
Input: F:Z; — Z.": the function to evaluate.

Result: (6(0), e ﬁ(mfl)) € HZL:_OI IF;’C' : the coefficients of each decomposition

A < OptimalShape(s,n)

ng<n =+ A

P (base) <£ D, /* Sample a random chain */
UO) — Mat(Pbase))

=[]
for k€ {0,...,m —1} do

/* Sample random chains and matrices D, until it produces a full-rank
matrix */

do
D) ﬁ F?ﬂ Xng
V&) — gy . (D(k))T
A®) Pk Oy
while Rank(A®)) < s™;
/* Solve the linear system to get the coefficients of the decomposition */
B*) « GaussElimination(AK) y(*))

/* Compute intermediary products */
P*) « ComputeProducts(A*), g*))

/* Append them to the pool of available variables */
YR+ (u(k)|73(k))

/* Compute the shape of the decomposition of the next output */

Ng+1 < N + Tk
sn
Tps1 < [ﬁ—‘

end

return (,8(0), e ,,B(m_l)>

We wrap this up into Algorithm 14. We make use of a few subroutines that we explain in
the following:

OptimalShape : The shape of the matrices for each decomposition can be defined recursively:

107

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

sipln|| XN |to|ti|ta|t3|ta|ts|le|tr|ts|to|tio|t11]|t12|t13 || #PBS
213 4 2013121212 -1-1-1-1-1-1- - - - 20
2135 4 1413|2122 -|-1-1-1-1- - - - 30
2136|134 (313|322 -1]-|-1-1-/|-1-+-1- 47
213/ 7112051414143 /3|3|-|-1-1-/|-1°+-1- 72
213|825 |8 |7 |6 |5 |54 44| -|-|-1-1]-1]- 111
2131914819 (8| 7|7]16|6|6|5|5|-1]-1|-1-1- 166
21310 69 |13]12(110|9 |9 |8 |8 | 7| T | 7| -1|-1]-1- 249
2(3|11(103|18|16|14|13|12|11|11(10{10| 9|9 | - | - | - 369
213112116524 (21|19(17]|16(15|15|14 |13 13|12 |12 | - - 547
2131131244 132(29(26(24|23(21/20(19|19 18|17 |17 |16 | - 806
213114139041 [37(34[32]|30(29 272625242423 |22]|22]| 1182
(a) s=2
s|pin A to t1 to t3 t4 t5 tﬁ #PBS
41512 4 3|2 - - - - 14
41531105143 - - - 34
4151412 | 9|7 |6 |5 - - 80
41551 60 |16 |13 |11 10| 9 | - - 178
4156|146 | 27|23 |21 |19 |17 |16 | - 392
4 15| 71297 |54 |46 |41 |37 |34]32]30 845
(b) s=4
S P n A to tl tg t3 #PBS
16 |17 12 25 | 10 7 - - 59
16 | 17 | 3 || 113 | 36 | 27 | 23 | - 285
16 | 17 | 4 || 487 | 134 | 105 | 90 | 80 1305
(c) s=16

Table 7.1: Optimal parameters for the shapes of the matrices for different values of s and n.

ng=n-+ A

=[]

N1 = N + Ug

The formula for ¢ can be easily obtained using the bound of Equation 7.8. It is then clear
that the only degree of freedom is the value of A, which shall be chosen to minimize the total
number of PBS. The initial chain needs A PBS, and then each decomposition takes 2¢;, PBS. So
we run an exhaustive search on the value of A to minimize the number of PBS, which is given

by:

m—1
i A+2 tr(A).
- SR OLLC)

Table 7.1 shows the optimal shapes for every configurations of s and n.

Rank computation and GaussianElimination. In concrete implementations, both proce-
dures are actually run at the same time: a Gaussian elimination is performed on A®) and a

solution B®) is found only if A®) is full rank.

108

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

ComputeProducts. This subroutine produces the matrix pk), already introduced above. This
is a matrix of shape s™ X t;, defined by:

pk) — (u(k) . (B(k))T> o (u(k‘) . (D(k))T) (7.13)
where B*) is a matrix containing the coefficients of B(k) rearranged in two dimensions as:
(k) (k) ﬁ(k)
I R
Bk — B Bii - Bim—
K ; . . :
51‘&7)1,0 /Bt(izl,l /Bzgill’nk,l

and @ is the coefficient-wise product.

It can be checked that (P*)) ;5 corresponds to the j'-th term of the decomposition (Equation
7.1), when evaluated with the vector x\9) as input.

Alternatively, we provide in Figure 7.5 an overview of the first steps of the algorithm, and
we detail them below:

1. A chain ®,,) is sampled and its matrix representation U ©) is constructed.

2. A matrix DO is sampled.

3. Using these two matrices, we compute the matrix A©) = (LI ©. (D(O))T) O vo,

4. Using a Gauss elimination, the vector ,3(0) corresponding to the LUT y(© is computed.
If A© is not full rank, then we go back to Step 1. and sample a new chain and a new
matrix.

5. We construct the ¢y variables products (that will be summed in the decomposition formula
of Equation 7.1). Those products are re-used in the base of the next chain.

6. Then we process the next iteration: we construct the new matrice 4! by appending the
products P and we sample a new matrix D). The algorithm then keep on iterating to
process all the m outputs.

7.4 Experimental Results

State of the Art. In [Ber+23a], the authors introduce a construction called WoP-PBS
(Without-Padding Programmable Bootstrapping), which leverages a technique known as cir-
cuit bootstrapping. This process transforms an LWE ciphertext into a GGSW ciphertext via
lgesw PBS?®. The core idea involves extracting each bit of the message and encoding it into a
GGSW ciphertext. These ciphertexts serve as selectors in a CMUX tree that selects an appropriate
accumulator polynomial based on the extracted bits. A classical PBS is then used to rotate this
polynomial using the remaining bits of the message.

As circuit bootstrapping dominates the computational cost, the overall complexity of WoP-
PBS scales linearly with the number of bits. This leads to excellent asymptotic performance.
However, the requirement of £ PBS operations per circuit bootstrapping becomes prohibitive at
low precisions.

The authors demonstrate that WoP-PBS surpasses classical PBS for precisions of 8 bits
and above. Moreover, they successfully evaluate functions over plaintext spaces up to 24 bits,
showcasing impressive scalability. The scheme supports the treatment of several messages at
the same time, which amortizes the accumulator selection part. We will compare our work to
version with 1, 2 and 4 messages (called blocks in the WoP-PBS paper).

“Here, loesw refers to the level of the gadget decompositions used in GGSW format, see Definition 2.6.2.

109

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

no

s" Triv Eval
\ s A(o)
3
(z,{()

0 .(D<0))’l') au©

n A
/ to - no
to ’D(U)

no

2. $.
GaussElimination
/ S y(©
to - no< | 5(0)
5. /

ComputeProducts

s™ Triv Eval P(0)
\ o A0

(z,{(l) . (D(l))’l') ou®

t] =Ny

t1 ’D(l)

n1

Figure 7.5: Overview of an iteration of the search algorithm for a decomposition. The outputs are the
vectors ﬁ(l), that gives the decomposition for the function F represented by the vectors y*). We also show
the construction of the next matrices UV and AM.

110

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

Experimental Results and Comparison with WoP-PBS. Direct comparison with [Ber+23a]
is difficult, as the authors do not report runtime measurements. Instead, they rely on a cost
model to quantify performance. Fortunately, they include the cost of the classical PBS in this
model, which serves as a baseline to translate our empirical timings into their cost framework.

Using our approach, we generated decompositions for random LUTS of size 2", where 4 < n <
14 and measure the time of execution of the LUT int the homomorphic domain. We evaluated
multiple chunk sizes (s = 2, 4 and 16), all followed by a small prime (resp. 3, 5 and 17) that is
used for the value of p. Parameters were selected to ensure an error probability of 2740, which
is slightly stricter than the 273° used in [Ber+23a], placing our results at a slight disadvantage
in the comparison.

Figure 7.6 summarizes our experimental results. It presents the runtime for homomorphic
LUT evaluation using our technique, alongside classical PBS performance. To enable a fair
comparison with WoP-PBS, we mapped their cost model to estimated runtimes on our hardware
using classical PBS as a baseline.

Our method outperforms the state of the art for precisions between 6 and 10 bits and
surpasses the single-block version (i.e.,the version with one single message in input) of WoP-PBS
up to 14 bits. Its implementation is also very simple, as it simply requires an implementation
of the standard PBS and not any advanced homomorphic operators. While [Ber+23a] report
results up to 24 bits, our method does not realistically scale that far. Although there is no
theoretical barrier, generating a decomposition at such precision would require solving a linear

system of size 224, which is computationally impractical with our experimental setup.

7.5 Conclusion

With this work, we have shown that homomorphic evaluations in a large plaintext space can
be accelerated by decomposing it into several smaller ones. We have provided algorithms to
generate such decompositions for any function, and showed metrics to prove the significant
improvement of performances achieved.

An interesting perspective would be to try to get a better theoretical understanding of the
probability to find a decomposition with respect to the parameters picked. In this work we
relied on a randomized trial-and-error technique, which demonstrated to be good enough in
practice, but it would be interesting to get an idea of the time required to find decomposition
for arbitrarily large input space.

111

CHAPTER 7. ACCELERATING LARGE LOOK-UP TABLES

104
-e- Classical PBS M
WoP-PBS: 1 blocks ’;’
--m- WoP-PBS: 2 blocks K
--m- WoP-PBS: 4 blocks !
—4— Our Work: s=2
Our Work: s=4
Oour Work: s=16
10°
W
E
[}
E
"_
10?
.
’f
’f
10! e
-
2 4 5] 8 10 12 14

Bitwidth

Figure 7.6: Comparison of timings of the classical PBS, the WoP-PBS and our work. The i-block version
of WoP-PBS corresponds to slicing the input into i messages. Timings of WoP-PBS have been inferred
from the cost model of [Ber+23a]. Experiments run on a server equipped with an AMD Ryzen Thread-
ripper PRO 7995WX with 96 cores, with a mazximal frequency of 5.4 GHz and 528 GB of RAM.

112

Chapter

ﬁ A Practical Solution for
Parameter Selection

Along this manuscript, a recurring problem we faced was the prohibitive runtime of the PBS
algorithm. In the previous chapter, we presented different method to deal with its poor perfor-
mances, notably by trying to limit the number of calls to this algorithm in practical settings.
But would it be possible to reduce the running time of this operation itself?

Recall that neither the runtime of PBS nor the resulting noise level are affected by the specific
LUT being evaluated. On the big picture, the plaintext precision is the factor that matters the
most, and is its well-known that PBS becomes impractical for precisions exceeding 8 bits.

But if we dive deeper into the inner workings of this operation, we discover that the running
time of the PBS (and of all the other sophisticated homomorphic constructions) mostly depends
on the parametrization of the TFHE scheme. So, to improve the performances of homomorphic
operations, what we would like is a procedure that would select parameters to optimize the
performances of the algorithms.

However, selecting parameters for TFHE poses a significant (and relatively unexplored) en-
gineering challenge. The scheme demands configuring a dozen distinct parameters, resulting
in a vast space of potential configurations. This complexity is further compounded by addi-
tional considerations: the required precision of plaintexts and the homomorphic circuits to be
evaluated need to be taken into account in the process. Moreover, implementing advanced ho-
momorphic operators (such as different PBS implementations) makes the parameter selection
even more intricate. Finally, one also needs to consider the specific implementation and the exe-
cution environment. Performances can vary significantly across different libraries and machine,
necessitating optimization for each specific deployment scenario.

Surprisingly, the literature on parameter selection for TFHE is rather sparse. Some works
have specifically addressed the selection of cryptographically secure parameters. Notably, the
lattice-estimator [APS15] is a tool that simulates state-of-the-art attacks and estimates the
concrete security of various LWE parameter sets. It is widely used by practitioners to as-
sess the security of their implementations. Additionally, the recent work in [Bia+4-24] offers a
comprehensive survey on the security of FHE schemes, covering lattice theory concepts and
associated attacks. While selecting cryptographically secure parameters is certainly essential,
another key consideration is ensuring the correctness of homomorphic computations. Due to the
noise inherent in ciphertexts and the effects of homomorphic operations, errors can arise during
computations. Therefore, it is crucial to maintain the underlying error probability below a spec-
ified target threshold. The core challenge in parameter selection lies in ensuring cryptographic
security, computational correctness (with a concrete upper bound on error probability), and the
optimization of performance in homomorphic operations.

The main step forward regarding this specific problem was made by Bergerat et al. in
[Ber+23a]. Their work formalizes the parameter selection process for TFHE as an optimization
problem. The authors model homomorphic computations as graphs of atomic patterns (APs),
which are sub-graphs of FHE operators. They propose a generic methodology to optimize the
entire graph by solving a minimization problem under constraints, where each AP is assigned

113

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

an efficient set of parameters. However, their approach to assigning parameters to APs does not
consider the specificities of different FHE libraries or the machine on which they run. While this
methodology is implemented in the concrete-optimizer [Zam22b], it is neither documented nor
designed to be a user-friendly standalone tool. Additionally, it lacks machine-specific profiling
and does not support extensibility to other libraries.

In contrast, mainstream libraries such as tfhe-rs [Zam22c| and OpenFHE [Bad+22] use
hardcoded sets of parameters. However, to the best of our knowledge, these libraries provide no
documentation on how these parameters were selected or any formal proof that they consistently
achieve the intended levels of security and correctness.

Our contributions. In this chapter, we aim at filling the aforementioned gap by presenting
an efficient method to identify efficient sets of parameters for individual atomic patterns. This is
achieved through our new library and machine-dependent cost model, and efficient optimization
algorithm. Our approach is implemented in a tool called ORPHEUS (for “Optimized Research of
Parameters for Homomorphic Encryption made Universal and Simple”), which will be released
as open-source software.

Specifically, our contribution is threefold:

o Efficiency of parameter selection. We introduce a concrete methodology to reduce the
search space of TFHE parameters and select the optimal set for a given homomorphic
circuit.

e Library and Machine-tailored parameter selection. We replace the naive cost model from
[Ber+23a] (based on operation counts) by developing a profiling method able to adapt to
different libraries and execution environments. After profiling phase, our model predicts
the performance of a given circuit instantiated with any set of parameters without the
need for costly empirical measurements.

e Open-source tool: Our techniques have been implemented and tested in ORPHEUS. This
tool has been designed with modularity and user-friendliness in mind, making it simple
for cryptographers to extend it to new homomorphic operators, machines or libraries.

Additionally:

o Taking as a core example the classic TFHE atomic pattern made of linear operations
followed by a layer or PBS (referred to as CJP in [Ber423al), we go through the whole
methodology step-by-step to provide a concrete example of how the optimization algorithm
works.

o We also present benchmarks that validate and even improve the (non-documented) pa-
rameter selection of one of the mainstream libraries, namely tfhe-rs [Zam22c]|.

Alongside presenting ORPHEUS, this chapter attempts to provide a survey to help FHE
practitioners to better understand noise behavior and the role of parameters in noise manage-
ment.

8.1 TFHE Parameter Selection Problem

In this paper, we build upon the framework developed in [Ber+23a], which formalizes the pa-
rameter selection for TFHE as an optimization problem. The authors model a homomorphic
computation as a graph consisting of two types of sub-graphs: atomic patterns and noise-
accumulating patterns. Atomic patterns are subgraphs of FHE operators that produce one or

114

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

more ciphertexts with noise independent of the input noise, i.e., by incorporating PBS in prac-
tice. In contrast, noise-accumulating patterns involve FHE operators that add noise to the input
noise, such as KeySwitchor dot product operations.

[Ber+23a] proposes a high-level framework to formalize the problem of selecting optimal
parameters for a TFHE circuit as an abstract optimization problem, based on a target security
level and a target error probability. Furthermore, they introduce a method, implemented in
a tool referred to as concrete-optimizer [Zam22b|, to select parameters for an individual
AP, and a strategy to optimize parameter selection for a graph of APs within a global circuit.
However, the concrete-optimizer’s method for an individual AP is neither well-documented
nor designed as a user-friendly, standalone tool. Additionally, while using a generic cost model,
it does not support machine-dependent profiling or extension to other TFHE libraries. This
chapter and the associated tool, ORPHEUS, aim to fill this gap.

Our methodology covers all possible FHE graphs of atomic patterns, including the trivial
case of a leveled circuit without PBS. Specifically, we address three types of FHE graphs:

1. The entire circuit to evaluate boils down to a single noise-accumulating pattern or a single
atomic pattern: in this scenario, we start with fresh ciphertexts (with noise variance
corresponding to a fresh encryption), and the output ciphertexts must have noise small
enough to allow for decryption without exceeding the error probability perr.

2. The circuit is composed of several instances of the same atomic pattern, such as the classic
TFHE atomic pattern made of linear operations followed by a layer of PBS (referred to as
CJP in [Ber+23a]).! In this situation the output of the considered atomic pattern is the
input of a similar atomic pattern, enforcing the constraint that the output noise must not
exceed the input noise.

3. The circuit combines different atomic patterns: in this case, the parameters of the atomic
patterns must be optimized together using a higher-level compilation method (such as the
one in [Ber+23a]). This introduces additional constraints, such as the inequalities between
the noise variances at the input/output of consecutive atomic patterns and the equality of
ciphertext dimensions.

Our methodology applies to each of these three scenarios, taking as input either a noise-
accumulating pattern or an atomic pattern, along with a set of constraints, including a security
level A and a error probability per. It is illustrated with a running example in Section 8.2 using
a classical atomic pattern. For simplicity, we omit the description of the methodology for noise-
accumulating patterns, as it is similar to, and more straightforward than, the one applied to
atomic patterns.

Before delving into the details, we first formalize the parameter selection problem in the
rest of this section. We begin by presenting the parameters of the TFHE scheme, followed by a
discussion of the three fundamental challenges in FHE: security, correctness, and performance.

8.1.1 TFHE Parameters

Chapter 2 was dedicated to an in depth-presentation of the TFHE scheme. Particularly, Sec-
tions 2.5 and 2.7.2 present two main building blocks, respectively the KeySwitch and the Pro-
grammable Bootstrapping. In this section, we focus on the parameters that dimension the
scheme.

We present all these parameters in Definition 8.1.1 and provide their explicit definition sets,
along with reasonable and typical ranges that will serve as the foundation for our subsequent

! Different instances of an atomic pattern all have the same structure but the coefficients in their linear opera-
tions as well as the look-up tables in their PBS might differ from one instance to another.

115

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

selection process. In practice, these ranges can be adjusted without affecting the methodology
itself, although they might influence the performance of the convergence process.

Definition 8.1.1. A tuple of TFHE parameters is defined as:

P = (¢, Nshorts £y N, Oshort, Tlong, BPBS, £PBS, BKs, IKs)

belonging to the space:

with

Q X Nahort X K X Npoly X Sehort X Siong X Bps X Lps X Bks X Lxs,

q: the modulus used for the ciphertext space, typically chosen as a standard integer
precision, such as 232 or 264, In our experiment, we restrict it to @ = {254} to match
the main TFHE libraries (namely tfhe-rs [Zam22c] and OpenFHE [Bad+22]). However,
it can be changed to 232 or any other value without affecting the methodology.

Nshort: the dimension of the LWE ciphertexts used within the PBS algorithm?. As it will be
explained in Section 8.1.2; this value is directly linked to the security level and the noise
variance of these ciphertexts. A small dimension would require a higher noise variance
to achieve the same security level, which is ultimately constrained by the modulus ¢ and
the expected correctness level. On the other hand, a large dimension would slow down
the computations. A typical range for this parameter which we use in our experiments is
Nshort = [200, 1500].

N: the degree of the polynomials in GLWE ciphertexts. We restrict N to be a power
of 2, as this choice is computationally efficient for Fast Fourier Transform (FFT)-based
polynomial multiplication and offers favorable algebraic properties. This approach was
originally adopted in the TFHE paper [Chi+20], and has been maintained in subsequent
works. A typical range for this parameter which we use in our experiments is Npoly =
{28 ...,2!4}. Indeed, larger powers are inefficient, while smaller ones make correctness
hard to achieve (taking a small N makes the accumulator polynomial of the BlindRotate
shorter, so it leaves less room for error).

k: the dimension of GLWE ciphertexts. The product k - N must meet the same lower
bound as nghore to ensure security. We set an upper bound for this product at 2!, based
on practical experiments indicating that the PBS becomes too slow when this value is
exceeded. In our experiments, we fix K = {1,...,8} and filter out the pairs (k, N) whose
product exceeds 2'*. Thus, the product space for k and N is defined as {(k, N) € K x
Npoly | k- N < 214}.

Oshorts Olong: the standard deviation of the Gaussian distribution of fresh noise in the
ciphertexts of dimension respectively nghort and niong (or (£, N)). In the following, we will
make oghory and ojong entirely dependent from the other parameters, so these sets will be
reduced to a single element each.

Bpps : the base used in the gadget decompositions occurring in the BlindRotate phase.
We restrict the decomposition basis to powers of two so it divides ¢, avoiding rounding
errors. A wide range for this parameter which we consider in our experiments is Bppg =

{28 ...,225}.

2Note that some LWE ciphertexts will have dimensions Nong = k - N, namely the ones produced by
SampleExtracton a PBS accumulator.

116

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

e Bks : similar to the previous one but for the KeySwitch phase. As we observed that
KeySwitch requires smaller decompositions basis, we consider Bgg = {23,...,2'} in our
experiments.

e /pps and fks: the levels of those decompositions. We can restrict to cases where %éplgg <q,

because otherwise the precision of the gadget decomposition would uselessly exceed the

precision of a ciphertext. So, we take ¢pgs = {1, ..., 4} and filter out the pairs (Bpgs, {pas)
that do not fit. Following the same reasoning, we take Lxgs = {1,...,9} and apply the
filtering.

While the above ranges are representative examples which we use in our experiments, OR-
PHEUS allows the user to define these ranges as input of the search, enabling them to enlarge
or reduce the search space according to their needs. Different examples of such ranges can be
found in [Tap23].

Next, we explain the three metrics used to assess the relevance of a given parameter tuple:
security, correctness, and performances. The two former come as constraints of the optimization
problem while the latter comes as the cost function to be minimized.

8.1.2 The Security Constraint

The security of TFHE is built on top of the Learning with Errors problem, introduced in [Reg05]
and recalled in Definition 2.1.1.

During TFHE’s encryption phase, two types of fresh ciphertexts can be generated: short
ciphertexts, which are LWE ciphertexts of dimension ngnort, and long ciphertexts, which can
either be GLWE ciphertexts of dimension k and degree N, or LWE ciphertexts of dimension k- N.
According to the current state of cryptanalysis, the hardness of GLWE, k. N5, is considered
equivalent to that of LWE ;. N, Glong Therefore, the parameters (¢, Nshort, Oshort) and (¢, kN, Olong)
for the instances LWE,, and LWE k. N 0,,, must be chosen to guarantee a security level
of at least A\ bits.

These fresh ciphertexts, whether short or long, are provided to the server as input. Addition-
ally, the evaluation keys used by the server for keyswitches and PBS are themselves collections
of fresh ciphertexts that encrypt the bits of the secret key. Ensuring the LWE security of these
ciphertexts is sufficient to secure the entire homomorphic encryption pipeline, as all subsequent
ciphertexts are deterministically derived from the input ciphertexts and the evaluation keys.
They will share the same parameters as the fresh ones apart from the noise which will be larger.

TshortOshort

A widely recognized tool in the scientific community for assessing the security of lattice-
based cryptographic schemes is the lattice-estimator [APS15]. This tool acts as an oracle,
providing security level estimates for (G)LWE instances based on their parameters. In Section
8.2.1, we detail how this tool is integrated within our framework.

8.1.3 The Correctness Constraint

As homomorphic operations are carried out, the noise grows. If the noise exceeds a certain
threshold, the client will obtain an incorrect result upon decryption. While injecting random
noise into ciphertexts is essential to ensure security, it makes theoretically impossible to guar-
antee that some homomorphic computation will yield a correct result with absolute certainty.
However, by selecting bigger parameters, the error probability can be reduced to an arbitrary
small value, such as 2740, 2764 op 27128,

Correctness is also closely tied to the security of the scheme. Recent works [Che+24a;
Che+24b] have demonstrated that decryption errors can reveal information about the secret
key. Specifically, an adversary could exploit a high error probability to build a key-recovery

117

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

attack by exploiting theses errors. Therefore, it is crucial to select parameter tuples that ensure
sufficiently negligible error probabilities, typically 27128,

To address these correctness issues, it is important to analyze and compute the error probabil-
ity of a given circuit, ensuring that the chosen parameters provide sufficient reliability throughout
the homomorphic computation.

In purely linear circuits (i.e., in noise-accumulating patterns), noise accumulates additively
with each operation, causing error probability to increase monotonically. This means we only
need to ensure the final noise level (at the circuit’s end, right before decryption) remains below
some safety threshold. However, introducing a PBS operation in the circuit makes things a bit
more complex.

If the noise right before the BlindRotate step of the PBS is too high, the output of the PBS
will still be a low-noise ciphertext but it will encrypt an incorrect value (because the rotation of
the accumulator will land on the wrong torus sector). So, we must approach noise management
a bit differently: rather than focusing solely on the final noise level, we must ensure the noise
remains sufficiently low at each point preceding a BlindRotate operation (which are actually
the points where the noise is maximal in the circuit). By maintaining noise below our safety
threshold at these critical junctures, we can guarantee with overwhelming probability that the
PBS operations will produce correct results.

To be able to analyze the noise in such critical points, we make the assumption that the
distribution of the noise remains Gaussian after homomorphic operations. This assumption is
widely accepted in the literature and is for example supported by the measurements presented
in the work of [Ber+25].

Concretely, let us instantiate a bootstrapping circuit with a given tuple of TFHE parameters.
Let us denote the variance of the noise right before BlindRotate by ogritical. Using this value, it
is possible to compute the error probability of this PBS with the following formula (that appears
in [Chi+21]):

Perr = erfc ((8.1)

.
2\/5 : Ucritical)

where 7 denotes the size of a torus sector, and erfc the complementary error function of Gauss,
defined as
fe(z)=1- > / 2
erffc(z)=1——=] e
VT Jo

Observe that the bootstrapping fails if the noise exceeds half a sector of the torus, which
corresponds to %. So, we need to integrate the Gaussian outside of the bounds of the sectors.
This gives the result.

All in one, the information we need about a circuit includes both the formula for the variance
at the output, which is to be compared with either the maximum noise variance for decryption
or the input constraint, and the formula for the noise variance just before the BlindRotate step.
If the circuit contains multiple PBS, we focus on the one with the highest variance, as it is the
most likely to lead to errors. In our methodology, we consider the first inequality on the noise
variance at the output as a constraint and we rely on the critical noise variance to estimate the
error probability. In particular, we can rewrite Equation 8.1 to compute the upper bound on
the variance (referred to as the "safety threshold" in this section), ensuring a correct PBS with
a probability of 1 — perr, using torus sectors of size 7:

-
Thound (Perr, T) = 2\/§] erfcfl(p) (8.2)
err

The size of the torus sectors 7 is determined by the plaintext modulus p. A larger modulus
means a thinner torus discretization, thus smaller torus sectors. In the most simple case, the
torus is simply shared in p sectors, which fix 7 = %. Another recurrent scenario is the use of a

118

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

bit of padding (see Section 3.2) to deal with the negacyclicity problem, in which case 7 becomes
q
%.

In Section 8.2.1, we explain how we use this bound in our tool to generate parameters that
ensure correctness up to an error probability input by the user.

8.1.4 The Optimization Problem

To find good parameters, a naive approach would consist in relying solely on empirical mea-
surements. Specifically, one could evaluate the atomic pattern AP for every possible tuple of
parameters, record the runtime and noise levels, and construct an exhaustive database of re-
sults. To configure a TFHE instance of AP for a practical use-case (with predefined correctness
probability and security level), one would then compute the safety variance threshold as out-
lined in Equation 8.2, filter the database to retain only the parameter tuples that meet both the

correctness and security requirements, and finally select the fastest configuration.
(AP)
(Perr,0in,0out

correctly the atomic pattern APwith probability at least (1 — perr), when fed with inputs of
maximal noise oy, and producing results of maximal noise oo,. The goal of this optimization
algorithm is to compute:

More formally, let us denote by P,) the set of all parameter tuples that evaluate

argmin Runtime”"(p;). (8.3)
cpAP)

¢ (Perr;oin,oout)

While conceptually simple, this approach does not scale. Running a PBS is notoriously slow,
and the parameter space is too large. Moreover, each experiment would need to be repeated
multiple times to gather enough data points for the average running time to be statistically
meaningful. Therefore, we need a model capable of accurately predicting the runtime of a
circuit for a given parameter set without requiring it to be executed. Since performance depends
significantly on the machine and library used, it is unlikely that a generic model could capture the
behavior of the circuit across all possible targets. Instead, we adopt a target-specific approach,
developing a separate model for each architecture. To ensure practicality, the cost of training
such a model must remain minimal. In the next section, we describe our method to speed-up the
parameter search while basing it on an accurate prediction of AP’s running time for a specific
library on a specific machine.

8.2 Our Solution

In the previous section, we outlined the various challenges involved in selecting the appropriate
parameters for a TFHE instance. Now, we present our framework to address these challenges.

To illustrate our methodology, we apply it to a simple atomic pattern, first introduced in
[CJP21] and extensively studied since then, which consists of a dot product (DP) between a vector
of ciphertexts and a vector of clear constants of maximal norm v, followed by a programmable
bootstrapping, as shown in Figure 8.1. We shall consider the second type of FHE graphs defined
at the beginning of Section 8.1, with the constraint that the noise variance in output of the atomic
pattern must not exceed the noise variance in input.

We denote Library the considered software library implementing the atomic pattern and
Machine the machine on which the computation is run.

119

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

LWE (nshort) LWE(nshort) GLWE(k, N)
! MS BR
: OKS I oMS L OBR
LWE(iong) op LWE (niong)
Tin OPBS

Figure 8.1: CJP Atomic pattern. On each wire is displayed the type and size of ciphertext, as well as the
standard deviation of the noise on this point.

Survey of the security

Security Level (A) and q value

—— A=80, q=32

-=-- A=80, q=64

—— A=128,q=32
== A=128, q=64
— A=192, q=32
——- A=192, q=64
—— A=256, q=32
——- A=256, q=64

60

N w B u
o o o o
L L L

Minimal log_sigma to ensure security

fary
o
!

600 800 1000 1200 1400
n

Figure 8.2: Isosecurity curves illustrating the minimum noise level (log scale) required for a given dimen-
ston n to achieve a security level X with modulus q.

8.2.1 Reducing the Parameter Space
Security-Based Space Reduction

As discussed in Section 8.1.2; the security constraints establish a relationship between the pa-
rameters (¢, Nshort, Oshort) for LWE instances and (g, k, N, 0long) for GLWE instances. A well-
established result in the field, detailed in [Tap23|, shows that if ¢ is fixed and o is computed as
the smallest value required to achieve a given security level A for a given n, the relationship be-
tween n and log, (o) can be closely approximated by an affine function. This observation allows
us to fit a simple affine model to (n,logy(c)) pairs, significantly simplifying the estimation of o
for any n. Such a fitting provides a computationally efficient way to enforce security constraints
while navigating the parameter space.

Figure 8.2 illustrates this relationship for different values of security level A and modulus q.
On each isosecurity curve, any point (n,log, (o)) that lies above it corresponds to a secure LWE
instance. However, there is a crucial exception: zero noise is trivially insecure, so we impose a
lower bound on log,(c). Following the reasoning outlined in [GHS12] and [Tap23|, we fix this

120

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

Table 8.1: Pairs (a,b) for different security levels A and modulus q as computed with the lattice estimator.

q A a b

80 || -0.04086 | 33.71697
932 128 || -0.02576 | 34.66181
192 || -0.01880 | 36.60474
256 || -0.01754 | 40.78150

80 || -0.04125 | 65.99926
064 128 || -0.02582 | 66.70935
192 || -0.01767 | 67.25340
256 || -0.01489 | 69.13875

lower bound at two bits.
Let a and b denote the parameters of the affine curve, such that for a fixed value of A and a
fixed value of ¢:
log(o) = max(a-n+1b,2). (8.4)

Table 8.1 provides pairs (a, b) corresponding to several pairs of security levels A and modulus ¢
and computed from the experiments performed with the lattice-estimator [APS15].3

From this result, oghort (resp. oiong) can always be determined as a direct function of ngnert
(resp niong = k - V) using Equation 8.4. This approach removes both degrees of freedom Sgport
and Sjong. Consequently, the size of the search space is significantly reduced, and the parameter
tuples are inherently restricted to secure configurations.

Correctness-Based Space Reduction

We have seen that the security constraints translate into relationships between certain param-
eters, thereby reducing the size of the search space. Interestingly, the same happens with the
correctness constraint.

Recall that Equation 8.2 shows that for a given error probability pe, and a given size of
torus sector 7, a safety threshold opoung can be defined for the noise variance that should not
be exceeded. On the other hand, for a given atomic pattern, it is possible to derive a noise
formula that expresses the highest noise variance o¢itical (for a PBS) as a function of the TFHE
parameters and the features of this AP. Therefore, to ensure the correct error probability, the
following inequality must hold:

Ocritical < Thound- (85)

This inequality can be rewritten to derive bounds on one of the parameters with respect to
the others. In practice, we choose to do that with ngot, because it is the parameter with the
largest definition space (see the example of Section 8.2.1). By doing so, we eliminate the largest
dimension of the search space, significantly reducing the cost of an exhaustive search.

The above principle can be extended to consider external constraints on the noise variances
in input and output of the atomic pattern. Those additional constraints simply translate to
further bounds on nghert (Which might reduce the search space even more).

Wrapping-up the two above space reductions: for each partial tuple, we apply the security
constraint to derive the noise parameters oghort and oiong (from Equation 8.4), then the constraint
of correctness (from Equation 8.5) to get the range of possible values for ngot. The remaining
parameters form so-called partial parameters tuples, which live in the space Q X K X Mpoly X
Bpps x Lpps x Bks X Lks.

3We used commit 374f07331e6575d1856b2212f3b8acac96e0295¢.

121

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

Based on the typical ranges defined in Section 8.1.1, the reduced space contains approxi-
mately 2!7 tuples. This reduction makes exhaustive search feasible, which was previously im-
practical.

Performance-Based Space Reduction

The runtime of an APnaturally increases when ngport becomes larger. So we complete each partial
tuple with the smallest value possible for ngnot Which complies with the correctness constraint
(from Equation 8.5). At this point, all the partial tuples have been completed to form the most
efficient corresponding full parameter tuple. For each one, we estimate their running time using
a cost model fitted for the couple (Library, Machine) and select the fastest one. In Section 8.2.2,
we explain how to construct such tailored cost models.

Example on CJP

To illustrate the above method, we apply it to the classic TFHE atomic pattern made of linear
operations followed by a layer of PBS (referred to as CJP in [Ber+23a]). We consider the use
case of a circuit solely composed of such atomic patterns, with the constraint that the output
noise must not exceed the input noise. We explain in more details in Appendix A.1 how to derive
Ocritical fOr this use-case. The concrete formula, which has been derived and proved in [Tap23],
is:

4N? B2
O-gritical = qg |:V2 : <nsh0rt : (KPBS(I{; + 1)N]I;BS 0120ng)
14
+n .%.kﬂ +nlongli
ot o less 2 2 1oms
PBS KS

B2 n
2 KS short
+ Nlong ° lks - Oshort " "74 o

12 24

where v is the maximal norm of the vector containing the clear constants of the linear combi-
nation DP in the CJP atomic pattern (where the max is over the different instances of the CJP
pattern involved in the FHE graph).

As explained in Section 8.2.1, we want to write this as a function of nghoi. We use the
security constraint to substitute ognory by an expression function of ngnort. The formula can be
rewritten as:

o-(%ritical = Q- 22'(a'n5hort+b) + ﬁ * Nishort + 7 (86)
with:
AN? Bis
Q= qT‘nlong'gKS'?
6 2 4N2 (ﬁ (k’—|— 1)]\7%%85 2 q2kN 1
VT |\ tees Tlong T 710 c3oles | T 24
q 12 48Bpges 24
. 4N2n10ng
7T Tl

Studying this function with a simple differentiation shows that it admits only one minimum
Omin attained for nghort = Mmin, With:

122

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

Nomin = 2 (;logz (_2041116(2)a> - b) .

From there, we can compute o,y and opoung for each partial parameter tuple. This leads
to two possible cases:

o If oy is greater than opound, then the considered partial parameter tuple is not suitable
for the AP regardless of the value of ngnort, and can therefore be discarded.

e Otherwise, we need to determine the smallest ng,ort such that the noise variance remains
below opound. Since the function defining oeitical (introduced in Equation 8.6) is monoton-
ically decreasing with respect to ngnort, this optimal value can be efficiently found using a
simple dichotomic search algorithm.

Once all the partial tuples have been either discarded or completed with the optimal ngport,
we apply the cost model to all valid tuples and select the most efficient one.

8.2.2 Modeling the Execution Time

While the above approach allows to significantly reduce the research space, the latter remains
too vast to run the target atomic pattern for each parameter set to build a database of the
execution time. Indeed, a typical atomic pattern includes a (computationally heavy) PBS and it
should be run several times for each configuration to get an accurate estimation of the running
time. To tackle this issue, we need a cost model which, for a given parameter set, outputs an
accurate estimation of the running time for the target atomic pattern.

The approach proposed in [Ber+23a] consists in counting the number of elementary opera-
tions required for a given parameter set, and use this count as a direct prediction of the running
time. However, the main libraries that implement TFHE all use some advanced optimizations
techniques, such as parallelization or exploitation of hardware optimizations. This makes the
execution time vary significantly with respect to Library and Machine.

That is why we propose a measurements-driven approach, more realistic, that we break down
into three steps:

1. Measurements: We construct a representative subset of the parameter space and measure
the execution time of the atomic pattern for every parameter tuple of the subset on (Library,
Machine).

2. Training: Using the database constructed in the previous step, we train a model to
predict the execution time on (Library, Machine). We dive deeper into the inner workings
of this model in the rest of this section.

3. Inference : Inferring an execution time of a parameter set is extremely fast using our
model. Thus, we simply run the inference for every single possible parameter tuple to
build a database, which our optimization algorithm will use as a reference.

The intuition behind our model is that a PBS can be broken down into smaller subroutines
such as gadget decompositions, Fast-Fourier Transforms (FFT) or polynomial multiplications.
So, in principle, we could measure the running time of these subroutines on (Library, Machine),
and then deriving the number of calls to these subroutines for each parameter tuples. By
summing it all together, estimating the running time should be easy and would only require a
few measurements (namely, the running time of each subroutine). However, their computational
complexities depend from the parameter tuple itself. For example, the running time of the FFT
is in O(N log V) and the gadget decompositions are linear in ks or in fpgs.

123

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

Our approach to modeling the runtime of an AP is as follows: for each parameter tuple,
we consider each subroutine and count the calls to them. We also derive the computational
complexity. Then, we try to construct a linear combination of the form given in Definition 8.2.1.

Definition 8.2.1. Let AP an atomic pattern. For a given parameter tuple P and a set
{A1,..., Ay} of subroutines, the cost of evaluating AP can be written as:

a
ZCountAp(Ai) x Complexityp(A;) x LinearCoeff(.A;)
i=1

where:
o Countap(A;) represents the number of calls to the subroutine .4; within AP.

o Complexityp(A;) is an expression of the computational complexity of the subroutine A;
with respect to the TFHE parameters tuple. This complexity refers to the expression in
the O(-) expressing the runtime of A; (e.g. Nlog N for the FFT). Specifically, it quantifies
the number of elementary operations (e.g., additions, multiplications, or memory accesses)
that the subroutine performs, depending on the parameters. Determining this expression
is done by analyzing the algorithm of the subroutine.

o LinearCoeff(.A4;) represents the hidden constant in the O notation, that captures the
behavior of the target machine and library. We will determine it using a linear regression.

Counting the number of calls to a given subroutine is quite easy, as well as expressing the
complexities. The linear coefficients are then estimated using a linear regression model.

We train the linear regression model from the measurements performed on the parameter
subset, which allows us to determine the linear coefficients and thus a concrete formula to predict
the execution time for any parameter tuple on (Library, Machine).

In Table A.1 (in Appendix A.2), we provide the formulas and coefficients obtained through
linear regression for the CJP atomic pattern, evaluated with the library tfhe-rs and on the
server? that will be used in Section 8.4 for our experiments.

Figures 8.3 and 8.4 presents experimental results for our training method applied to the
tfhe-rs library on the same server. Figure 8.3 shows that our model quickly achieves a small
mean squared error as the size of the training set increases. A subset as small as 50 already
provides good results. Figure 8.4 further demonstrates the accuracy of our model for the whole
range of inputs: we observe that the prediction errors are small relatively to the actual timings
(about 4.3% in average).

Thanks to this model, we are now equipped with a prediction oracle for the runtime of an
atomic pattern, instantiated with a given parameter tuple with a specific Library on a specific
Machine. Next, we use this oracle to select the best parameter tuple.

8.2.3 The Optimization Process

In this section, we present our pipeline of operations to generate parameters. The optimization
process can be separated in two phases: an offline phase and online phase.

The offline phase is the heaviest: we generate a random subset of the parameter space and
measure the running time of the atomic pattern APusing Library on Machine. We then train a
regression model to get a predictive model for the cost of APwith the couple (Library, Machine).

During the online phase, to generate a set of parameters for APon (Library, Machine), the user
specifies the error probability pe, and the security level A they target. The tool then constructs

4The server is equipped with an AMD Ryzen Threadripper PRO 7995WX with 96 cores, with a maximal
frequency of 5.4 GHz and 528 GB of RAM.

124

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

Root Mean Squared Error (RMSE)

2750 A

2500

2250+

2000

1750 A

1500 A

Prediction Error (ps)

1250 A

1000 A

T T T T T T
0 50 100 150 200 250 300 350
Size of the training set

Figure 8.3: Root Mean Squared Error of the model with respect to the size of the training set.

Prediction Errors

10000

5000+

—5000 1

Prediction Error (Js)
o

—10000 4

10000 20000 30000 40000 50000 60000 70000 80000
Actual Timing (us)

Figure 8.4: Residual plot for a training set of size 50.

a whole grid of partial parameter tuples spanning the entire space. Then, it uses the constraints
presented in the previous subsection to determine the noise variances and the range of values of
Nshort that guarantee correct result for a probability up to 1 — peyr.

Once all the parameters tuples of the grid have been completed, the model trained for
(Library, Machine) is used to infer the running times of every possibilities and the best is selected.

8.3 Presentation of ORPHEUS

We now present ORPHEUS (for “Optimized Research of Parameters for Homomorphic Encryp-
tion made Universal and Simple”), a Python-based tool for monitoring and debugging homo-
morphic applications, as well as generating parameter sets for user-defined atomic patterns. The
tool is available at the following link (and is planned to be open-sourced in the future):

125

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

https://git.cryptoexperts.net/research/tfhe_params_optimizer

In this section, we propose a tour of its capabilities and we explain how its modular structure
allows a seamless extension to new libraries and atomic patterns.
ORPHEUS offers three main functionalities:

e Probing the execution of homomorphic circuits: One of the pain points encountered by
developers of homomorphic applications is the debugging. Indeed, the values manipulated
in the homomorphic circuit are encrypted, so when an error occurs it is hard to pinpoint
the exact spot of the circuit where noise has overflown. A solution is to propagate the
secret key along the circuit but this is a cumbersome and error-prone process. ORPHEUS
offers a solution to this problem by allowing the developer to place probes in the circuit
to monitor the magnitude of the noise at chosen locations. This is useful to trace and
visualize the evolution of the noise along the execution. It can be used to build datasets
to train cost model or study the noise behavior for a wide range of parameters. Under the
hood, this probing functionality works by serializing ciphertexts and their respective keys
into an universal format, enabling decryption outside the library.

o Building machine-tailored cost models: After producing datasets of experimental measure-
ments for a couple (Library, Machine), ORPHEUS can train a cost model to predict the
execution time of an atomic pattern with respect to a given parameter tuple, using the
method of Section 8.2.2. By exporting these models, it is possible to use them “offline”
on any other machine (such as a simple laptop) to predict running times on the target
machine (typically, a production server).

e Parameter selection: ORPHEUS also implements the search method presented in Sec-
tion 8.2.1 to produce parameters for an atomic pattern and a couple (Library, Machine).
Users can specify their desired level of security, their target error probability and the plain-
text modulus they need. ORPHEUS can then generate an optimal parameter tuple for the
cost model corresponding to the target machine. If ORPHEUS is run directly on the target
machine, it is able to dynamically validate the produced parameters by running the atomic
pattern and directly measuring the actual error probabilities and performances.

Quick Tour of the API

. python app.py data_generation
[--max_n_sets [MAX_N_SETS]]
[--n_tests [N_TESTS]]
library machine pattern modulus

The user specifies the size of the dataset they want to build, the number of iterations to
test for each parameter tuple, the target library, an identifier for the machine, an identifier
of the atomic pattern and the plaintext modulus to run the experiments with. It outputs a
csv file containing every parameter tuples tested, as well as the timings measurements and
the noise measurements of each experiment. This file can then be used for easy plotting
and visualizations.

. python app.py training_cost_model
library machine pattern

After having produced a dataset for a configuration (Library, Machine, AP), the user can
train a cost model. This produces a serialized model, that can be reused later.

126

https://git.cryptoexperts.net/research/tfhe_params_optimizer

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

p (bits) Set Nshort | K | N | Oshort | Tlong | Bpes | Ires | Bks | ks R;Zizlé?e RIZI;;EE:: ¢ logs (Perr)
Original tfhe-rs 720 | 6 | 256 | 2487 | 2284 | ol7 1 24 3 7.2 11.4 -68
1bit | ORPHEUS (server) || 636 | 3 | 512 | 2502 | 2271 | 218 1 23 | 4 5.7 - -69
ORPHEUS (laptop) || 736 | 3 | 512 | 2477 | 2271 | 29l7 1 21 3 - 11.7 -65
Original tfhe-rs 775 | 3| 512 | 2474 | 2284 | oI 1 24 3 6.7 11.0 -65
2 bits | ORPHEUS (server) || 706 | 3 | 512 | 2%85 | 2271 | 217 1 23 4 6.3 - -75
ORPHEUS (laptop) || 736 | 3 | 512 | 2485 | 2271 | 219 1 24 | 3 - 11.8 -66
Original tfhe-rs 857 | 2| 1024 | 2453 | 2157 | 923 1 25 3 10.8 17.9 -64
3 bits | ORPHEUS (server) || 750 |2 | 1024 | 2473 | 2138 | 222 1 23 | 5 10.3 - -65
ORPHEUS (laptop) || 823 | 2 | 1024 | 244 | 2138 | 920 1 25 3 - 17.6 -64
Original tfhe-rs 833 | 1| 2048 | 2459 | 2157 | 923 1 23 5 13.2 22.4 -60
4 bits | ORPHEUS (server) || 798 | 1| 2048 | 2461 | 2138 | 220 1 23 5 12.6 - -75
ORPHEUS (laptop) || 862 | 1 | 2048 | 2471 | 2138 | 923 1 25 3 - 22.3 -66
Original tfhe-rs 946 | 1 | 4096 | 2431 | 220 | 922 1 21 4 29.5 50.1 -64
5 bits | ORPHEUS (server) || 862 | 1 | 4096 | 2445 | 220 | 222 1 2 1 6 28.4 - -68
ORPHEUS (laptop) || 899 | 1 | 4096 | 2435 | 220 | 225 1 24 | 4 - 49.0 -68
Original tfhe-rs | 1005 | 1 | 8192 | 2416 | 220 | 922 1 23 7 67.4 124.4 -69
6 bits | ORPHEUS (server) || 930 | 1 | 8192 | 2427 | 220 | 22 1 22 | 6 60.9 - -65
ORPHEUS (laptop) || 1006 | 1 | 8192 | 2407 | 220 | 923 1 25 4 - 118.2 -65

Table 8.2: Comparisons of the parameter sets PARAM_MESSAGE_X_CARRY_0_KS_PBS_GAUSSIAN of tfhe-rs
and the ones produced by ORPHEUS for the server and the laptop. The timings and the noise are measured
and averaged on 500 runs. The runtimes are expressed in milliseconds.

. python app.py parameter_generation [--retest]
[--n_tests [N_TESTS]]
library machine pattern perr p

When the cost model is trained, optimized parameter sets can be generated. The user
inputs the identifier of the library, the machine, the pattern and the plaintext modulus
for which they want to generate parameters. They also specify the error probability they
target. The retest allows to challenge the produced parameters by running n_tests
iterations of the atomic pattern, to measure the critical noise and recompute the real error
probability to compare with the one estimated by the tool.

ORPHEUS has been designed to be as modular as possible, in order to make it easily extend-
able to new use-cases. In the following, we present procedures to realize such extensions:

Using ORPHEUS with a new atomic pattern. To work with an atomic pattern, OR-
PHEUS only needs two components:

o A declaration file: In this file, the user gives a high-level description of the atomic pattern.
They declare the probes placed in the code, the noise formula of the critical point and
the count of basic operations occurring in the atomic pattern. Thanks to probing, it is
possible to validate noise formulas and produce visualizations for the noise propagation.

e The source file: This is an implementation of the atomic pattern written in the target
library. One can directly put probes in it, or in the inner files of the library itself. This
file has then to be linked in the declaration file.

127

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

Importing a new library to ORPHEUS. ORPHEUS abstracts all the logic of decryption
and noise measurements. While it natively supports tfhe-rs, further libraries can be imported.
For this purpose, the user has to implement two components:

e Probes: For each library, ORPHEUS requires a key probe and a ciphertext probe. They are
simply two pieces of code allowing to serialize a key and a ciphertext into a file following
an universal format. This format supports both LWE and GLWE encryptions. ORPHEUS
can then use these files to decrypt the ciphertexts and measure the noises. Probes for
tfhe-rs are already implemented and integrated into the tool. To use ORPHEUS with a
specific library, the latter must be recompiled to include the probes.

e Binding: ORPHEUS needs to be able to call the benchmark files of the atomic patterns.
Thus, a binding from Python to the library language is required. Some boilerplates for
Rust and C++ are already present in the tool, and they have been already implemented
for tfhe-rs.

8.4 Experimental Results

We used ORPHEUS to experimentally check the parameter sets hardcoded in tfhe-rs. More
specifically, we ran many instances of the CJP atomic pattern, measured the variance of the
noise at the critical point, and computed the error probability to check that it matches the
target values.

We then trained a cost model for two different machines: a server and a laptop. The server
features an AMD Ryzen Threadripper PRO 7995WX with 96 cores, with a maximal frequency
of 5.4 GHz and 528 GB of RAM. The laptop features an Intel Core i7-10870H @ 2.2 GHz with 8
cores, and 8 GB of RAM. After training the cost model on these machines, we produce parameter
sets for both of them using ORPHEUS and compare their performances with the ones obtained
with hardcoded set of parameters.

Table 8.2 provides the parameter sets obtained with ORPHEUS for the two considered
machines. For the sake of comparison, we further provide the main parameter set named
PARAM_MESSAGE_X_CARRY_O_KS_PBS_GAUSSIAN hardcoded in tfhe-rs (in the shortint API).
These parameter sets are for a fixed ¢ = 25 (as per the underlying implementation) and are
used with varying bit-sizes of p, where X indicates the specific bit-size. They target a security
level A = 128 and error probability of 2764, We observe that the original sets comply with the
claimed error probability of 2764, except for the case |p| = 4 bits which is slightly above. We
also observe that the parameter sets obtained with ORPHEUS performs closely but generally
slightly better than the hardcoded sets in terms of performances, which is a natural consequence
of our more accurate cost model®.

We also provide in Appendix A.3 some parameters sets generated for the server ensuring
an error probability of 27128, According to the work of [Che+24a; Che+24b], such low error
probabilities may be necessary to protect the scheme against attacks exploiting the decryption
errors. We see that this increase correctness comes at the performance cost of roughly doubling
the execution time.

5Note that our results on the server are more accurate compared to those on the laptop, where the predictions
deviate more significantly from the actual timings. This discrepancy is likely due to the laptop’s reduced stability
during computations.

128

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

8.5 Conclusion

In this chapter, we presented and formalized the problem of parameter selection for FHE, and
more specifically for the TFHE scheme. We explained and quantified the three key properties
that a homomorphic application should satisfy: security, correctness and efficiency. We then
presented a conceptually-simple procedure to select parameters, based on an exhaustive search
made possible by an initial reduction of the parameter space. To bridge the gap between theory
and practice, these techniques have been implemented in a tool called ORPHEUS.

ORPHEUS has been designed with flexibility in mind, and is meant to be easily extensible
to new use-cases. Future work on this tool will consist in developing plug-ins to support other
FHE libraries (such as OpenFHE) and more advanced homomorphic operators.

129

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

130

I Conclusion

Fully Homomorphic Encryption is believed to be on the verge of practical usability. However,
several challenges have still to be overcome before it can be integrated into everyday applications.
The purpose of this thesis was to adress some concrete obstacles that hinder the practical
deployment of FHE. In this concluding section, we list the main challenges and relate them to
the contributions presented throughout this manuscript.

On Efficiency. FHE still incurs an significant computational overhead compared to tradi-
tional, unencrypted computation. While the FHE schemes themselves have been seen much
improvement in the last years, an orthogonal direction is to design new algorithms tailored
for specific use-cases. In Chapter 4, we developed a framework to accelerate the evaluation of
Boolean functions. At the opposite end of the spectrum, Chapter 7 focus on accelerating the
evaluation of LUT in larger plaintext spaces than those originally supported by TFHE. Chap-
ter 5 further demonstrated how Boolean and arithmetic representations offer complementary
advantages, and how efficient conversion mechanisms between both can enhance performance
within homomorphic circuits.

Another way of improving performances lies in selecting appropriate parameters for the
scheme. We propose such a procedure of parameter selection, which takes into account the
computational circuit to evaluate as well as the environment of execution.

On Data Expansion and Transciphering. Data expansion is another well-known bottle-
neck in FHE. The literature has long proposed transciphering as a promising solution, however
this technique necessitates homomorphic evaluation of the decryption function of a symmetric
cipher. In Chapter 5, we have shown how far we could push to evaluate efficiently the AES
cipher using TFHE. However, it is clear that standard ciphers such as AES cannot compete
against schemes specifically designed with the use-case of transciphering in mind. In Chapter
6, we present such a cipher and show how its design combines the properties required to ensure
both cryptographic security and homomorphic efficiency.

On Compilation and Development of Homomorphic Applications. Developing homo-
morphic applications remains a tedious task, requiring deep understanding of both cryptography
and the internal workings of specific FHE schemes. It is clear that an adoption of FHE at scale
will require an automated compilation toolchain that will abstract away cryptography complex-
ities from non-expert programmers.

In Chapter 4, we proposed algorithm that automatically compiles Boolean functions into
optimized sequences of homomorphic operations. We did a similar thing in the case of large
LUTs in Chapter 7, where those LUTs are compiled into a more tractable algorithm, composed
of smaller ones. Finally, our parameter selection framework presented in 8 further contributes
to this effort.

The road ahead is likely still long before FHE becomes a ubiquitous technology. However,
the pace of scientific progress in this field is accelerating rapidly, making it reasonable to believe
(and hope) that such a technological revolution could occur in the not-so-distant future.

131

CHAPTER 8. A PRACTICAL SOLUTION FOR PARAMETER SELECTION

132

I Bibliography

[24]

[Alb+15]

[Alb+18]

[AMT22]

[APS15]

[Ara+24]

[Bad+22]

[Bau+25]

Lattigo v6. Online: https://github. com/tuneinsight/lattigo. EPFL-LDS,
Tune Insight SA. Aug. 2024 (cit. on p. 5).

Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. “Ciphers for MPC and FHE”. In: Advances in Cryptology — EU-
ROCRYPT 2015, Part I. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056.
Lecture Notes in Computer Science. Sofia, Bulgaria: Springer Berlin Heidelberg,
Germany, Apr. 2015, pp. 430-454. DOL: 10.1007/978-3-662-46800-5_17 (cit. on
p. 62).

Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod Vaikun-
tanathan. Homomorphic Encryption Security Standard. Tech. rep. Toronto, Canada:
HomomorphicEncryption.org, Nov. 2018 (cit. on p. 5).

Tomer Ashur, Mohammad Mahzoun, and Dilara Toprakhisar. “Chaghri - A FHE-
friendly Block Cipher”. In: ACM CCS 2022: 29th Conference on Computer and
Communications Security. Ed. by Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi. Los Angeles, CA, USA: ACM Press, Nov. 2022, pp. 139-150. DOI: 10.
1145/3548606. 3559364 (cit. on p. 62).

Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
Learning with Errors. Cryptology ePrint Archive, Paper 2015/046. 2015. URL:
https://eprint.iacr.org/2015/046 (cit. on pp. 8, 88, 89, 113, 117, 121).

Diego F. Aranha, Antonio Guimaraes, Clément Hoffmann, and Pierrick Méaux.
Secure and efficient transciphering for FHE-based MPC. Cryptology ePrint Archive,
Report 2024/1702. 2024. URL: https://eprint .iacr.org/2024/1702 (cit. on
p. 92).

Ahmad Al Badawi, Andreea Alexandru, Jack Bates, Flavio Bergamaschi, David
Bruce Cousins, Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey
Kim, Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Carlo Pascoe, Yuriy Polyakov,
Ian Quah, Saraswathy R.V., Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky,
Matthew Triplett, Vinod Vaikuntanathan, and Vincent Zucca. OpenFHE: Open-
Source Fully Homomorphic Encryption Library. Cryptology ePrint Archive, Paper
2022/915. https://eprint.iacr.org/2022/915. 2022. URL: https://eprint.
iacr.org/2022/915 (cit. on pp. 5, 114, 116).

Jules Baudrin, Sonia Belaid, Nicolas Bon, Christina Boura, Anne Canteaut, Gaétan
Leurent, Pascal Paillier, Léo Perrin, Matthieu Rivain, Yann Rotella, and Samuel
Tap. “Transistor: a TFHE-friendly Stream Cipher”. In: Advances in Cryptology -
CRYPTO (2025). URL: https://eprint.iacr.org/2025/282 (cit. on pp. xii, xxi,
62, 77, 81, 84).

133

https://github.com/tuneinsight/lattigo
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1145/3548606.3559364
https://doi.org/10.1145/3548606.3559364
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2024/1702
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2025/282

BIBLIOGRAPHY

[Bea+15]

[Bel+24]

[Bel+25]

[Ben+22]

[Ber+23a]

[Ber+23b]

[Ber+25]

[BGO7]

[BGV11]

Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. “The SIMON and SPECK lightweight block ciphers”. In: Pro-
ceedings of the 52nd Annual Design Automation Conference, San Francisco, CA,
USA, June 7-11, 2015. ACM, 2015, 175:1-175:6. DOIL: 10.1145/2744769.2747946.
URL: https://doi.org/10.1145/2744769.2747946 (cit. on p. 51).

Mariya Georgieva Belorgey, Sergiu Carpov, Nicolas Gama, Sandra Guasch, and
Dimitar Jetchev. “Revisiting Key Decomposition Techniques for FHE: Simpler,
Faster and More Generic”. In: Advances in Cryptology — ASITACRYPT 202/, Part I.
Ed. by Kai-Min Chung and Yu Sasaki. Vol. 15484. Lecture Notes in Computer
Science. Kolkata, India: Springer, Singapore, Singapore, Dec. 2024, pp. 176-207.
DOI: 10.1007/978-981-96-0875-1_6 (cit. on pp. 9, 15).

Sonia Belaid, Nicolas Bon, Aymen Boudguiga, Renaud Sirdey, Daphné Trama,
and Nicolas Ye. “Further Improvements in AES Execution over TFHE”. In: TACR
Commun. Cryptol. 2.1 (2025), p. 39. DOIL: 10 .62056 /AHMP - 4TW9. URL: https :
//doi.org/10.62056/ahmp-4tw9 (cit. on pp. xi, xxi).

Adda-Akram Bendoukha, Oana Stan, Renaud Sirdey, Nicolas Quero, and Luciano
Freitas de Souza. “Practical Homomorphic Evaluation of Block-Cipher-Based Hash
Functions with Applications”. In: Foundations and Practice of Security - 15th In-
ternational Symposium, FPS 2022, Ottawa, ON, Canada, December 12-14, 2022,
Revised Selected Papers. Ed. by Guy-Vincent Jourdan, Laurent Mounier, Carlisle
M. Adams, Florence Sedes, and Joaquin Garcia-Alfaro. Vol. 13877. Lecture Notes in
Computer Science. Springer, 2022, pp. 88-103. DOI: 10.1007/978-3-031-30122~
3_6. URL: https://doi.org/10.1007/978-3-031-30122-3%5C_6 (cit. on pp. 52,
59).

Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien Ligier,
Jean-Baptiste Orfila, and Samuel Tap. “Parameter Optimization and Larger Preci-
sion for (T)FHE”. In: Journal of Cryptology 36.3 (July 2023), p. 28. DOI: 10.1007/
S00145-023-09463-5 (cit. on pp. 26, 77, 86, 88, 97, 99, 109, 111-115, 122, 123).

Jonas Bertels, Michiel van Beirendonck, Furkan Turan, and Ingrid Verbauwhede.
Hardware Acceleration of FHEW. Cryptology ePrint Archive, Report 2023/618.
2023. URL: https://eprint.iacr.org/2023/618 (cit. on p. 5).

Olivier Bernard, Marc Joye, Nigel P. Smart, and Michael Walter. “Drifting To-
wards Better Error Probabilities in Fully Homomorphic Encryption Schemes”.
In: Advances in Cryptology — EUROCRYPT 2025, Part VIII. Ed. by Serge Fehr
and Pierre-Alain Fouque. Vol. 15608. Lecture Notes in Computer Science. Madrid,
Spain: Springer, Cham, Switzerland, May 2025, pp. 181-211. po1: 10.1007/978~
3-031-91101-9_7 (cit. on pp. 19, 118, 148).

Coéme Berbain and Henri Gilbert. “On the Security of IV Dependent Stream Ci-
phers”. In: Fast Software Encryption — FSE 2007. Ed. by Alex Biryukov. Vol. 4593.
Lecture Notes in Computer Science. Luxembourg, Luxembourg: Springer Berlin
Heidelberg, Germany, Mar. 2007, pp. 254-273. DOI: 10.1007/978-3-540-74619~
5_17 (cit. on p. 79).

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully Homomorphic
Encryption without Bootstrapping. Cryptology ePrint Archive, Report 2011/277.
2011. URL: https://eprint.iacr.org/2011/277 (cit. on p. 8).

134

https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1007/978-981-96-0875-1_6
https://doi.org/10.62056/AHMP-4TW9
https://doi.org/10.62056/ahmp-4tw9
https://doi.org/10.62056/ahmp-4tw9
https://doi.org/10.1007/978-3-031-30122-3_6
https://doi.org/10.1007/978-3-031-30122-3_6
https://doi.org/10.1007/978-3-031-30122-3%5C_6
https://doi.org/10.1007/s00145-023-09463-5
https://doi.org/10.1007/s00145-023-09463-5
https://eprint.iacr.org/2023/618
https://doi.org/10.1007/978-3-031-91101-9_7
https://doi.org/10.1007/978-3-031-91101-9_7
https://doi.org/10.1007/978-3-540-74619-5_17
https://doi.org/10.1007/978-3-540-74619-5_17
https://eprint.iacr.org/2011/277

BIBLIOGRAPHY

[BGV12]

[BGV14]

[Bha+19]

[Bia+24]

[Bit-+12]

[Bon+-22]

[Bon+24]

[Bor+12]

[BOS23]

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully ho-
momorphic encryption without bootstrapping”. In: ITCS 2012: 3rd Innovations in
Theoretical Computer Science. Ed. by Shafi Goldwasser. Cambridge, MA, USA:
Association for Computing Machinery, Jan. 2012, pp. 309-325. pDO1: 10 . 1145/
2090236.2090262 (Cit. on p. 62).

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) Fully Ho-
momorphic Encryption without Bootstrapping”. In: ACM Trans. Comput. Theory
6.3 (July 2014). 1SSN: 1942-3454. DOI: 10.1145/2633600. URL: https://doi.org/
10.1145/2633600 (cit. on pp. 2, 5, 8).

Sauvik Bhattacharya, Oscar Garcia-Morchon, Rachel Player, and Ludo Tolhuizen.
Achieving secure and efficient lattice-based public-key encryption: the impact of the
secret-key distribution. Cryptology ePrint Archive, Report 2019/389. 2019. URL:
https://eprint.iacr.org/2019/389 (cit. on p. 8).

Beatrice Biasioli, Elena Kirshanova, Chiara Marcolla, and Sergi Rovira. A Tool
for Fast and Secure LWE Parameter Selection: the FHE case. Cryptology ePrint
Archive, Report 2024/1895. 2024. URL: https://eprint.iacr.org/2024/1895
(cit. on p. 113).

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again”. In: Imnovations in Theoretical Computer Science 2012, Cambridge, MA,
USA, January 8-10, 2012. Ed. by Shafi Goldwasser. ACM, 2012, pp. 326-349. DOTI:
10.1145/2090236.2090263. URL: https://doi.org/10.1145/2090236.2090263
(cit. on p. 6).

Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and Nigel P.
Smart. “FINAL: Faster FHE Instantiated with NTRU and LWE”. In: Advances in
Cryptology — ASTIACRYPT 2022, Part II. Ed. by Shweta Agrawal and Dongdai Lin.
Vol. 13792. Lecture Notes in Computer Science. Taipei, Taiwan: Springer, Cham,
Switzerland, Dec. 2022, pp. 188-215. DOI: 10.1007/978-3-031-22966-4_7 (cit. on
p. 93).

Antonina Bondarchuk, Olive Chakraborty, Geoffroy Couteau, and Renaud Sirdey.
Downlink (T)FHE ciphertexts compression. Cryptology ePrint Archive, Report
2024/1921. 2024. URL: https://eprint.iacr.org/2024/1921 (cit. on p. 86).

Julia Borghoff, Anne Canteaut, Tim Giineysu, Elif Bilge Kavun, Miroslav KneZe-
vié, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Sgren S. Thomsen, and Tolga Yalgin. “PRINCE - A
Low-Latency Block Cipher for Pervasive Computing Applications - Extended Ab-
stract”. In: Advances in Cryptology — ASIACRYPT 2012. Ed. by Xiaoyun Wang
and Kazue Sako. Vol. 7658. Lecture Notes in Computer Science. Beijing, China:
Springer Berlin Heidelberg, Germany, Dec. 2012, pp. 208-225. DOI: 10.1007/978~
3-642-34961-4_14 (Cit. on p. 62).

Thibault Balenbois, Jean-Baptiste Orfila, and Nigel P. Smart. “Trivial Transci-
phering With Trivium and TFHE”. In: Proceedings of the 11th Workshop on En-
crypted Computing & Applied Homomorphic Cryptography, Copenhagen, Denmark,
26 November 2023. Ed. by Michael Brenner, Anamaria Costache, and Kurt Rohloff.
ACM, 2023, pp. 69-78. DOT: 10.1145/3605759.3625255. URL: https://doi.org/
10.1145/3605759. 3625255 (cit. on pp. 52, 53, 59, 91, 92).

135

https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://eprint.iacr.org/2019/389
https://eprint.iacr.org/2024/1895
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1007/978-3-031-22966-4_7
https://eprint.iacr.org/2024/1921
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1145/3605759.3625255
https://doi.org/10.1145/3605759.3625255
https://doi.org/10.1145/3605759.3625255

BIBLIOGRAPHY

[Bou+-20]

[BP10]

[BPR12]

[BPR24]

[Bral2)]

[Bry89]

[Brz+25]

[Buc+16]

[Cam+-20]

[Can-+16]

Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev. “CHIMERA:
Combining Ring-LWE-based Fully Homomorphic Encryption Schemes”. In: J. Math.
Cryptol. 14.1 (2020), pp. 316-338. pOI: 10.1515/JMC-2019-0026. URL: https:
//doi.org/10.1515/jmc-2019-0026 (cit. on pp. 9, 15).

Joan Boyar and René Peralta. “A New Combinational Logic Minimization Tech-
nique with Applications to Cryptology”. In: Experimental Algorithms, 9th Inter-
national Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-22, 2010.
Proceedings. Ed. by Paola Festa. Vol. 6049. Lecture Notes in Computer Science.
Springer, 2010, pp. 178-189. poI: 10. 1007 /978 -3-642-13193-6\ _16. URL:
https://doi.org/10.1007/978-3-642-13193-6%5C_16 (cit. on pp. 56, 57, 59).

Abhishek Banerjee, Chris Peikert, and Alon Rosen. “Pseudorandom Functions
and Lattices”. In: Advances in Cryptology — EUROCRYPT 2012. Ed. by David
Pointcheval and Thomas Johansson. Vol. 7237. Lecture Notes in Computer Sci-
ence. Cambridge, UK: Springer Berlin Heidelberg, Germany, Apr. 2012, pp. 719—
737. DOI: 10.1007/978-3-642-29011-4_42 (Cit. on p. 92).

Nicolas Bon, David Pointcheval, and Matthieu Rivain. “Optimized Homomorphic
Evaluation of Boolean Functions”. In: IJACR Transactions on Cryptographic Hard-
ware and Embedded Systems 2024.3 (2024), pp. 302-341. DOI: 10.46586/tches.
v2024.13.302-341 (cit. on pp. xi, xxi, 26, 61, 62, 73).

Zvika Brakerski. “Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP”. In: Advances in Cryptology — CRYPTO 2012. Ed. by Reihaneh
Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer Berlin Heidelberg, Germany, Aug. 2012, pp. 868—886.
DOI: 10.1007/978-3-642-32009-5_50 (cit. on p. 5).

Lennart Brynielsson. “A short proof of the Xiao-Massey lemma”. In: IEEE Trans.
Inf. Theory 35.6 (1989), p. 1344 (cit. on p. 84).

Chris Brzuska, Sébastien Canard, Caroline Fontaine, Duong Hieu Phan, David
Pointcheval, Marc Renard, and Renaud Sirdey. “Relations Among New CCA Se-
curity Notions for Approximate FHE”. In: JACR Communications in Cryptology
(CiC) 2.1 (2025), p. 20. DOL: 10.62056/aee0iv7sf (cit. on p. 6).

Johannes A. Buchmann, Florian Gopfert, Rachel Player, and Thomas Wunderer.
“On the Hardness of LWE with Binary Error: Revisiting the Hybrid Lattice-Reduction
and Meet-in-the-Middle Attack”. In: AFRICACRYPT 16: 8th International Con-
ference on Cryptology in Africa. Ed. by David Pointcheval, Abderrahmane Nitaj,
and Tajjeeddine Rachidi. Vol. 9646. Lecture Notes in Computer Science. Fes, Mo-
rocco: Springer, Cham, Switzerland, Apr. 2016, pp. 24-43. DOI: 10.1007/978-3~
319-31517-1_2 (cit. on p. 8).

Léopold Cambier, Anahita Bhiwandiwalla, Ting Gong, Mehran Nekuii, Oguz H. Eli-
bol, and Hanlin Tang. “Shifted and Squeezed 8-bit Floating Point format for Low-
Precision Training of Deep Neural Networks”. In: CoRR abs/2001.05674 (2020).
arXiv: 2001.05674. URL: https://arxiv.org/abs/2001.05674 (cit. on p. 95).

Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrede Lepoint, Maria Naya-
Plasencia, Pascal Paillier, and Renaud Sirdey. “Stream Ciphers: A Practical So-
lution for Efficient Homomorphic-Ciphertext Compression”. In: Fast Software En-
cryption — FSE 2016. Ed. by Thomas Peyrin. Vol. 9783. Lecture Notes in Com-
puter Science. Bochum, Germany: Springer Berlin Heidelberg, Germany, Mar. 2016,
pp. 313-333. DOI: 10.1007/978-3-662-52993-5_16 (Cit. on p. 62).

136

https://doi.org/10.1515/JMC-2019-0026
https://doi.org/10.1515/jmc-2019-0026
https://doi.org/10.1515/jmc-2019-0026
https://doi.org/10.1007/978-3-642-13193-6_16
https://doi.org/10.1007/978-3-642-13193-6%5C_16
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.46586/tches.v2024.i3.302-341
https://doi.org/10.46586/tches.v2024.i3.302-341
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.62056/aee0iv7sf
https://doi.org/10.1007/978-3-319-31517-1_2
https://doi.org/10.1007/978-3-319-31517-1_2
https://arxiv.org/abs/2001.05674
https://arxiv.org/abs/2001.05674
https://doi.org/10.1007/978-3-662-52993-5_16

BIBLIOGRAPHY

[CCS19] Hao Chen, Ilaria Chillotti, and Yongsoo Song. “Improved Bootstrapping for Ap-
proximate Homomorphic Encryption”. In: Advances in Cryptology — EUROCRYPT 2019,
Part II. Ed. by Yuval Ishai and Vincent Rijmen. Vol. 11477. Lecture Notes in
Computer Science. Darmstadt, Germany: Springer, Cham, Switzerland, May 2019,
pp. 34-54. DOI: 10.1007/978-3-030-17656-3_2 (cit. on p. 5).

[Che+17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. “Homomorphic
Encryption for Arithmetic of Approximate Numbers”. In: Advances in Cryptology —
ASIACRYPT 2017, Part I. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10624.
Lecture Notes in Computer Science. Hong Kong, China: Springer, Cham, Switzer-
land, Dec. 2017, pp. 409-437. pOI: 10.1007/978-3-319-70694-8_15 (Cit. on
pp- XX, 4).

[Che+18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
“Bootstrapping for Approximate Homomorphic Encryption”. In: Advances in Cryp-
tology — FEUROCRYPT 2018, Part I. Ed. by Jesper Buus Nielsen and Vincent Ri-
jmen. Vol. 10820. Lecture Notes in Computer Science. Tel Aviv, Israel: Springer,
Cham, Switzerland, Apr. 2018, pp. 360-384. DO1: 10.1007/978-3-319-78381~
9_14 (cit. on p. 5).

[Che+24a] Marina Checri, Renaud Sirdey, Aymen Boudguiga, and Jean-Paul Bultel. “On the
Practical CPAP Security of “exact” and Threshold FHE Schemes and Libraries”.
In: Advances in Cryptology — CRYPTO 2024, Part III. Ed. by Leonid Reyzin and
Douglas Stebila. Vol. 14922. Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Cham, Switzerland, Aug. 2024, pp. 3-33. DOI: 10.1007/978~
3-031-68382-4_1 (cit. on pp. 6, 76, 90, 117, 128).

[Che+24b] Jung Hee Cheon, Hyeongmin Choe, Alain Passelégue, Damien Stehlé, and Elias
Suvanto. “Attacks Against the IND-CPAP Security of Exact FHE Schemes”. In:
ACM CCS 2024: 31st Conference on Computer and Communications Security. Ed.
by Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie. Salt Lake City,
UT, USA: ACM Press, Oct. 2024, pp. 2505-2519. DOI: 10.1145/3658644.3690341
(cit. on pp. 6, 76, 90, 117, 128).

[Chi+16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. “Faster
Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds”. In: Ad-
vances in Cryptology — ASTACRYPT 2016, Part I. Ed. by Jung Hee Cheon and
Tsuyoshi Takagi. Vol. 10031. Lecture Notes in Computer Science. Hanoi, Vietnam:
Springer Berlin Heidelberg, Germany, Dec. 2016, pp. 3-33. por: 10.1007/978-3~
662-53887-6_1 (cit. on p. 7).

[Chi+17] Tlaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. “Faster
Packed Homomorphic Operations and Efficient Circuit Bootstrapping for TFHE”.
In: Advances in Cryptology — ASIACRYPT 2017, Part I. Ed. by Tsuyoshi Takagi
and Thomas Peyrin. Vol. 10624. Lecture Notes in Computer Science. Hong Kong,
China: Springer, Cham, Switzerland, Dec. 2017, pp. 377-408. pO1: 10.1007 /978~
3-319-70694-8_14 (Cit. on p. 7).

[Chi+20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. “TFHE:
Fast Fully Homomorphic Encryption Over the Torus”. In: Journal of Cryptology
33.1 (Jan. 2020), pp. 34-91. DOI: 10.1007/s00145-019-09319~-x (cit. on pp. xix,
4,7, 8,12, 15, 31, 33, 37, 116).

[Chi+21] Tlaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. “Improved
Programmable Bootstrapping with Larger Precision and Efficient Arithmetic Cir-
cuits for TFHE”. In: Advances in Cryptology — ASIACRYPT 2021, Part III. Ed.
by Mehdi Tibouchi and Huaxiong Wang. Vol. 13092. Lecture Notes in Computer

137

https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-031-68382-4_1
https://doi.org/10.1007/978-3-031-68382-4_1
https://doi.org/10.1145/3658644.3690341
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/s00145-019-09319-x

BIBLIOGRAPHY

Science. Singapore: Springer, Cham, Switzerland, Dec. 2021, pp. 670-699. DOLI:
10.1007/978-3-030-92078-4_23 (cit. on pp. 15, 22, 26, 33, 49, 74, 78, 87, 118).

[Chil§] [laria Chillotti. “Vers l'efficacité et la sécurité du chiffrement homomorphe et du
cloud computing”. PhD thesis. Université Paris-Saclay, 2018 (cit. on pp. 7, 9).

[CHK20] Jung Hee Cheon, Seungwan Hong, and Duhyeong Kim. Remark on the Security of
CKKS Scheme in Practice. Cryptology ePrint Archive, Report 2020/1581. 2020.
URL: https://eprint.iacr.org/2020/1581 (cit. on p. 6).

[Cho+24] Mingyu Cho, Woohyuk Chung, Jincheol Ha, Jooyoung Lee, Eun-Gyeol Oh, and
Mincheol Son. “FRAST: TFHE-Friendly Cipher Based on Random S-Boxes”. In:
TACR Transactions on Symmetric Cryptology 2024.3 (2024), pp. 1-43. por1: 10.
46586/tosc.v2024.13.1-43 (cit. on pp. 77, 92).

[CIM19] Sergiu Carpov, Malika Izabachene, and Victor Mollimard. “New Techniques for
Multi-value Input Homomorphic Evaluation and Applications”. In: Topics in Cryp-
tology — CT-RSA 2019. Ed. by Mitsuru Matsui. Vol. 11405. Lecture Notes in Com-
puter Science. San Francisco, CA, USA: Springer, Cham, Switzerland, Mar. 2019,
pp. 106-126. DOI: 10.1007/978-3-030-12612-4_6 (Cit. on p. 65).

[CJP21] llaria Chillotti, Marc Joye, and Pascal Paillier. “Programmable Bootstrapping FEn-
ables Efficient Homomorphic Inference of Deep Neural Networks”. In: Cyber Secu-
rity Cryptography and Machine Learning - 5th International Symposium, CSCML
2021, Be’er Sheva, Israel, July 8-9, 2021, Proceedings. Ed. by Shlomi Dolev, Oded
Margalit, Benny Pinkas, and Alexander A. Schwarzmann. Vol. 12716. Lecture Notes
in Computer Science. Springer, 2021, pp. 1-19. DOI: 10.1007/978-3-030-78086~
9\ _1. URL: https://doi.org/10.1007/978-3-030-78086-9%5C_1 (cit. on
p. 119).

[CJSO01] Vladimor V. Chepyzhov, Thomas Johansson, and Ben J. M. Smeets. “A Simple
Algorithm for Fast Correlation Attacks on Stream Ciphers”. In: Fast Software En-
cryption — FSE 2000. Ed. by Bruce Schneier. Vol. 1978. Lecture Notes in Computer
Science. New York, NY, USA: Springer Berlin Heidelberg, Germany, Apr. 2001,
pp. 181-195. DOT: 10.1007/3-540-44706-7_13 (cit. on p. 84).

[Cle+22] Pierre-Emmanuel Clet, Martin Zuber, Aymen Boudguiga, Renaud Sirdey, and Cé-
dric Gouy-Pailler. Putting up the swiss army knife of homomorphic calculations
by means of TFHE functional bootstrapping. Cryptology ePrint Archive, Report
2022/149. 2022. URL: https://eprint.iacr.org/2022/149 (cit. on p. 78).

[Cle+23| Pierre-Emmanuel Clet, Aymen Boudguiga, Renaud Sirdey, and Martin Zuber. “ComBo:
A Novel Functional Bootstrapping Method for Efficient Evaluation of Nonlinear
Functions in the Encrypted Domain”. In: AFRICACRYPT 23: 14th International
Conference on Cryptology in Africa. Ed. by Nadia El Mrabet, Luca De Feo, and
Sylvain Duquesne. Vol. 14064. Lecture Notes in Computer Science. Sousse, Tunisia:
Springer, Cham, Switzerland, July 2023, pp. 317-343. po1: 10.1007/978-3-031~
37679-5_14 (cit. on p. 26).

[CLT14] Jean-Sébastien Coron, Tancreéde Lepoint, and Mehdi Tibouchi. “Scale-Invariant
Fully Homomorphic Encryption over the Integers”. In: PKC 2014: 17th Interna-
tional Conference on Theory and Practice of Public Key Cryptography. Ed. by Hugo
Krawczyk. Vol. 8383. Lecture Notes in Computer Science. Buenos Aires, Argentina:
Springer Berlin Heidelberg, Germany, Mar. 2014, pp. 311-328. poI: 10.1007/978-
3-642-54631-0_18 (cit. on pp. 56, 57, 59).

138

https://doi.org/10.1007/978-3-030-92078-4_23
https://eprint.iacr.org/2020/1581
https://doi.org/10.46586/tosc.v2024.i3.1-43
https://doi.org/10.46586/tosc.v2024.i3.1-43
https://doi.org/10.1007/978-3-030-12612-4_6
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-030-78086-9%5C_1
https://doi.org/10.1007/3-540-44706-7_13
https://eprint.iacr.org/2022/149
https://doi.org/10.1007/978-3-031-37679-5_14
https://doi.org/10.1007/978-3-031-37679-5_14
https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/978-3-642-54631-0_18

BIBLIOGRAPHY

[Con+22]

[Con23]

[Cos+22]

[Cou+23]

[CP19]

[CRV14]

[CTO0]

[Das+18]

Kelong Cong, Debajyoti Das, Jeongeun Park, and Hilder V. L. Pereira. “Sorting-
Hat: Efficient Private Decision Tree Evaluation via Homomorphic Encryption and
Transciphering”. In: ACM CCS 2022: 29th Conference on Computer and Commu-
nications Security. Ed. by Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi. Los Angeles, CA, USA: ACM Press, Nov. 2022, pp. 563-577. DOI: 10.1145/
3548606 .3560702 (cit. on p. 93).

HEIR Contributors. HEIR: Homomorphic Encryption Intermediate Representation.
https://github.com/google/heir. 2023 (cit. on p. 5).

Orel Cosseron, Clément Hoffmann, Pierrick Méaux, and Frangois-Xavier Standaert.
“Towards Case-Optimized Hybrid Homomorphic Encryption - Featuring the Elis-
abeth Stream Cipher”. In: Advances in Cryptology — ASTACRYPT 2022, Part 111
Ed. by Shweta Agrawal and Dongdai Lin. Vol. 13793. Lecture Notes in Computer
Science. Taipei, Taiwan: Springer, Cham, Switzerland, Dec. 2022, pp. 32-67. DOLI:
10.1007/978-3-031-22969-5_2 (Cit. on p. 62).

David Bruce Cousins, Yuriy Polyakov, Ahmad Al Badawi, Matthew French, An-
drew Schmidt, Ajey Jacob, Benedict Reynwar, Kellie Canida, Akhilesh Jaiswal,
Clynn Mathew, Homer Gamil, Negar Neda, Deepraj Soni, Michail Maniatakos,
Brandon Reagen, Naifeng Zhang, Franz Franchetti, Patrick Brinich, Jeremy John-
son, Patrick Broderick, Mike Franusich, Bo Zhang, Zeming Cheng, and Massoud Pe-
dram. TREBUCHET: Fully Homomorphic Encryption Accelerator for Deep Com-
putation. Cryptology ePrint Archive, Report 2023/521. 2023. URL: https://eprint.
iacr.org/2023/521 (cit. on p. 5).

Benjamin R. Curtis and Rachel Player. “On the Feasibility and Impact of Standar-
dising Sparse-secret LWE Parameter Sets for Homomorphic Encryption”. In: Pro-
ceedings of the 7Tth ACM Workshop on Encrypted Computing & Applied Homomor-
phic Cryptography, WAHCQ@QCCS 2019, London, UK, November 11-15, 2019. Ed. by
Michael Brenner, Tancrede Lepoint, and Kurt Rohloff. ACM, 2019, pp. 1-10. DoOT:
10.1145/3338469.3358940. URL: https://doi.org/10.1145/3338469.3358940
(cit. on p. 8).

Jean-Sébastien Coron, Arnab Roy, and Srinivas Vivek. “Fast Evaluation of Poly-
nomials over Binary Finite Fields and Application to Side-Channel Countermea-
sures”. In: Cryptographic Hardware and Embedded Systems — CHES 2014. Ed. by
Lejla Batina and Matthew Robshaw. Vol. 8731. Lecture Notes in Computer Science.
Busan, South Korea: Springer Berlin Heidelberg, Germany, Sept. 2014, pp. 170-187.
DOI: 10.1007/978-3-662-44709-3_10 (cit. on p. 95).

Anne Canteaut and Michaél Trabbia. “Improved Fast Correlation Attacks Using
Parity-Check Equations of Weight 4 and 5”. In: Advances in Cryptology — EURO-
CRYPT 2000. Ed. by Bart Preneel. Vol. 1807. Lecture Notes in Computer Science.
Bruges, Belgium: Springer Berlin Heidelberg, Germany, May 2000, pp. 573-588.
DOI: 10.1007/3-540-45539-6_40 (cit. on p. 84).

Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj D. Kalamkar,
Sasikanth Avancha, Kunal Banerjee, Srinivas Sridharan, Karthik Vaidyanathan,
Bharat Kaul, Evangelos Georganas, Alexander Heinecke, Pradeep Dubey, Jesis
Corbal, Nikita Shustrov, Roman Dubtsov, Evarist Fomenko, and Vadim O. Pirogov.
“Mixed Precision Training of Convolutional Neural Networks using Integer Opera-
tions”. In: CoRR abs/1802.00930 (2018). arXiv: 1802.00930. URL: http://arxiv.
org/abs/1802.00930 (cit. on p. 95).

139

https://doi.org/10.1145/3548606.3560702
https://doi.org/10.1145/3548606.3560702
https://github.com/google/heir
https://doi.org/10.1007/978-3-031-22969-5_2
https://eprint.iacr.org/2023/521
https://eprint.iacr.org/2023/521
https://doi.org/10.1145/3338469.3358940
https://doi.org/10.1145/3338469.3358940
https://doi.org/10.1007/978-3-662-44709-3_10
https://doi.org/10.1007/3-540-45539-6_40
https://arxiv.org/abs/1802.00930
http://arxiv.org/abs/1802.00930
http://arxiv.org/abs/1802.00930

BIBLIOGRAPHY

[De 06]

[Deo+24]

[Dij+10]

[DM15]

[Dob+18]

[Dob+19)]

[Dob+21]

[Dob+23]

[DROO]

[FV12)

Christophe De Canniere. “Trivium: A Stream Cipher Construction Inspired by
Block Cipher Design Principles”. In: ISC 2006: 9th International Conference on
Information Security. Ed. by Sokratis K. Katsikas, Javier Lopez, Michael Backes,
Stefanos Gritzalis, and Bart Preneel. Vol. 4176. Lecture Notes in Computer Science.
Samos Island, Greece: Springer Berlin Heidelberg, Germany, Aug. 2006, pp. 171—
186. pOI: 10.1007/11836810_13 (cit. on pp. 52, 53).

Amit Deo, Marc Joye, Benoit Libert, Benjamin R. Curtis, and Mayeul de Bellabre.
Homomorphic Evaluation of LWR-based PRFs and Application to Transciphering.
Cryptology ePrint Archive, Report 2024/665. 2024. URL: https://eprint.iacr.
org/2024/665 (cit. on p. 92).

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. “Fully
Homomorphic Encryption over the Integers”. In: Advances in Cryptology — EURO-
CRYPT 2010. Ed. by Henri Gilbert. Vol. 6110. Lecture Notes in Computer Science.
French Riviera: Springer Berlin Heidelberg, Germany, May 2010, pp. 24—43. DOI:
10.1007/978-3-642-13190-5_2 (Cit. on p. 2).

Léo Ducas and Daniele Micciancio. “FHEW: Bootstrapping Homomorphic Encryp-
tion in Less Than a Second”. In: Advances in Cryptology — EUROCRYPT 2015,
Part I. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056. Lecture Notes in
Computer Science. Sofia, Bulgaria: Springer Berlin Heidelberg, Germany, Apr. 2015,
pp. 617-640. DOI: 10.1007/978-3-662-46800-5_24 (cit. on pp. 7, 17).

Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand, Gre-
gor Leander, Eik List, Florian Mendel, and Christian Rechberger. “Rasta: A Ci-
pher with Low ANDdepth and Few ANDs per Bit”. In: Advances in Cryptol-
ogy — CRYPTO 2018, Part I. Ed. by Hovav Shacham and Alexandra Boldyreva.
Vol. 10991. Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Cham, Switzerland, Aug. 2018, pp. 662-692. DOI: 10.1007/978-3-319- 96884~
1_22 (cit. on p. 93).

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schlaffer. As-
con v1.2. Submission to Round 1 of the NIST Lightweight Cryptography project.
2019. URL: https://csrc.nist . gov/CSRC/media/Projects/Lightweight -
Cryptography/documents/round-1/spec-doc/ascon-spec.pdf (cit. on p. 54).

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schléaffer. “As-
con v1.2: Lightweight Authenticated Encryption and Hashing”. In: Journal of Cryp-
tology 34.3 (July 2021), p. 33. DOI: 10.1007/s00145-021-09398-9 (cit. on pp. 54,
55).

Christoph Dobraunig, Lorenzo Grassi, Lukas Helminger, Christian Rechberger,
Markus Schofnegger, and Roman Walch. “Pasta: A Case for Hybrid Homomorphic
Encryption”. In: TACR Transactions on Cryptographic Hardware and Embedded
Systems 2023.3 (2023), pp. 30-73. DOL: 10.46586/tches.v2023.13.30-73 (cit. on
p. 62).

Joan Daemen and Vincent Rijmen. “The Block Cipher Rijndael”. In: Smart Card
Research and Applications. Ed. by Jean-Jacques Quisquater and Bruce Schneier.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 277-284. 1SBN: 978-3-540-
44534-0 (cit. on pp. 56, 64, 65).

Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic

Encryption. Cryptology ePrint Archive, Report 2012/144. 2012. URL: https://
eprint.iacr.org/2012/144 (cit. on p. 5).

140

https://doi.org/10.1007/11836810_13
https://eprint.iacr.org/2024/665
https://eprint.iacr.org/2024/665
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-319-96884-1_22
https://doi.org/10.1007/978-3-319-96884-1_22
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.46586/tches.v2023.i3.30-73
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144

BIBLIOGRAPHY

[GBA21] Antonio Guimaraes, Edson Borin, and Diego F. Aranha. “Revisiting the functional
bootstrap in TFHE”. In: TACR Transactions on Cryptographic Hardware and Em-
bedded Systems 2021.2 (2021), pp. 229-253. 1SSN: 2569-2925. DOT: 10.46586/tches.
v2021.12.229-253. URL: https://tches.iacr.org/index.php/TCHES/article/
view/8793 (cit. on pp. 22, 65, 67, 78).

[Gee+23] Robin Geelen, Michiel Van Beirendonck, Hilder V. L. Pereira, Brian Huffman,
Tynan McAuley, Ben Selfridge, Daniel Wagner, Georgios D. Dimou, Ingrid Ver-
bauwhede, Frederik Vercauteren, and David W. Archer. “BASALISC: Programmable
Hardware Accelerator for BGV Fully Homomorphic Encryption”. In: TACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2023.4 (2023), pp. 32—
57. DOI: 10.46586/tches.v2023.14.32-57 (cit. on p. 5).

[Gen09] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: 41st An-
nual ACM Symposium on Theory of Computing. Ed. by Michael Mitzenmacher.
Bethesda, MD, USA: ACM Press, May 2009, pp. 169-178. DOI: 10.1145/1536414.
1536440 (cit. on pp. xviii, 2).

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. “Homomorphic Evaluation of the
AES Circuit”. In: Advances in Cryptology — CRYPTO 2012. Ed. by Reihaneh
Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer Berlin Heidelberg, Germany, Aug. 2012, pp. 850-867.
DOI: 10.1007/978-3-642-32009-5_49 (cit. on pp. 56, 57, 59, 62, 120).

[GMP19] Nicholas Genise, Daniele Micciancio, and Yuriy Polyakov. “Building an Efficient
Lattice Gadget Toolkit: Subgaussian Sampling and More”. In: Advances in Cryp-
tology — EUROCRYPT 2019, Part II. Ed. by Yuval Ishai and Vincent Rijmen.
Vol. 11477. Lecture Notes in Computer Science. Darmstadt, Germany: Springer,
Cham, Switzerland, May 2019, pp. 655-684. DOI: 10.1007/978-3-030- 17656~
3_23 (cit. on p. 13).

[Gou+17] Dahmun Goudarzi, Matthieu Rivain, Damien Vergnaud, and Srinivas Vivek. “Gen-
eralized Polynomial Decomposition for S-boxes with Application to Side-Channel
Countermeasures”. In: Cryptographic Hardware and Embedded Systems — CHES 2017.
Ed. by Wieland Fischer and Naofumi Homma. Vol. 10529. Lecture Notes in Com-
puter Science. Taipei, Taiwan: Springer, Cham, Switzerland, Sept. 2017, pp. 154—
171. DOI: 10.1007/978-3-319-66787-4_8 (Cit. on pp. 95, 106).

[GR16] Dahmun Goudarzi and Matthieu Rivain. “On the Multiplicative Complexity of
Boolean Functions and Bitsliced Higher-Order Masking”. In: Cryptographic Hard-
ware and Embedded Systems — CHES 2016. Ed. by Benedikt Gierlichs and Axel
Y. Poschmann. Vol. 9813. Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer Berlin Heidelberg, Germany, Aug. 2016, pp. 457-478. DOLI:
10.1007/978-3-662-53140-2_22 (Cit. on pp. 99, 106).

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic Encryption from
Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based”.
In: Advances in Cryptology — CRYPTO 2013, Part I. Ed. by Ran Canetti and Juan
A. Garay. Vol. 8042. Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer Berlin Heidelberg, Germany, Aug. 2013, pp. 75-92. po1: 10.1007/978-3~
642-40041-4_5 (cit. on pp. xv, 15).

[HK20] Kyoohyung Han and Dohyeong Ki. “Better Bootstrapping for Approximate Homo-
morphic Encryption”. In: Topics in Cryptology — CT-RSA 2020. Ed. by Stanislaw
Jarecki. Vol. 12006. Lecture Notes in Computer Science. San Francisco, CA, USA:
Springer, Cham, Switzerland, Feb. 2020, pp. 364-390. po1: 10.1007/978-3-030~
40186-3_16 (cit. on p. 5).

141

https://doi.org/10.46586/tches.v2021.i2.229-253
https://doi.org/10.46586/tches.v2021.i2.229-253
https://tches.iacr.org/index.php/TCHES/article/view/8793
https://tches.iacr.org/index.php/TCHES/article/view/8793
https://doi.org/10.46586/tches.v2023.i4.32-57
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-030-17656-3_23
https://doi.org/10.1007/978-3-030-17656-3_23
https://doi.org/10.1007/978-3-319-66787-4_8
https://doi.org/10.1007/978-3-662-53140-2_22
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-030-40186-3_16
https://doi.org/10.1007/978-3-030-40186-3_16

BIBLIOGRAPHY

[HS20]

[Inc20]

[Joy21]

[Kim+22]

[Kos+17]

[Kri+24]

[KS23]

[LM21]

[LMP22]

[Lof+12]

[LPRI10]

Shai Halevi and Victor Shoup. Design and implementation of HElib: a homomor-
phic encryption library. Cryptology ePrint Archive, Report 2020/1481. 2020. URL:
https://eprint.iacr.org/2020/1481 (cit. on p. 62).

Cryptolab Inc. HEaaN : Fully homomorphic encryption with CKKS scheme. https:
//github.com/virtualsecureplatform/TFHEpp. 2020 (cit. on p. 5).

Marc Joye. “Balanced Non-adjacent Forms”. In: Advances in Cryptology — ASI-
ACRYPT 2021, Part II1. Ed. by Mehdi Tibouchi and Huaxiong Wang. Vol. 13092.
Lecture Notes in Computer Science. Singapore: Springer, Cham, Switzerland, Dec.
2021, pp. 553-576. DOI: 10.1007/978-3-030-92078-4_19 (cit. on p. 13).

Seonghak Kim, Minji Park, Jaehyung Kim, Taekyung Kim, and Chohong Min.
“EvalRound Algorithm in CKKS Bootstrapping”. In: Advances in Cryptology —
ASIACRYPT 2022, Part II. Ed. by Shweta Agrawal and Dongdai Lin. Vol. 13792.
Lecture Notes in Computer Science. Taipei, Taiwan: Springer, Cham, Switzerland,
Dec. 2022, pp. 161-187. DOI: 10.1007/978-3-031-22966-4_6 (cit. on p. 5).

Urs Koster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K. Bansal, William
Constable, Oguz Elibol, Stewart Hall, Luke Hornof, Amir Khosrowshahi, Carey
Kloss, Ruby J. Pai, and Naveen Rao. “Flexpoint: An Adaptive Numerical Format
for Efficient Training of Deep Neural Networks”. In: CoRR abs/1711.02213 (2017).
arXiv: 1711.02213. URL: http://arxiv.org/abs/1711.02213 (cit. on p. 95).

Florian Krieger, Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy. OpenNTT:
An Automated Toolchain for Compiling High-Performance NTT Accelerators in
FHE. Cryptology ePrint Archive, Report 2024/1740. 2024. URL: https://eprint.
iacr.org/2024/1740 (cit. on p. 5).

Kamil Kluczniak and Leonard Schild. “FDFB: Full Domain Functional Bootstrap-
ping Towards Practical Fully Homomorphic Encryption”. In: TACR Transactions
on Cryptographic Hardware and Embedded Systems 2023.1 (2023), pp. 501-537.
DOI: 10.46586/tches.v2023.11.501-537 (cit. on pp. 26, 78).

Baiyu Li and Daniele Micciancio. “On the Security of Homomorphic Encryption on
Approximate Numbers”. In: Advances in Cryptology — EUROCRYPT 2021, Part L
Ed. by Anne Canteaut and Francois-Xavier Standaert. Vol. 12696. Lecture Notes
in Computer Science. Zagreb, Croatia: Springer, Cham, Switzerland, Oct. 2021,
pp. 648-677. DOI: 10.1007/978-3-030-77870-5_23 (cit. on pp. 6, 76).

Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. “Large-Precision Homomorphic
Sign Evaluation Using FHEW /TFHE Bootstrapping”. In: Advances in Cryptology
- ASTACRYPT 2022, Part 1I. Ed. by Shweta Agrawal and Dongdai Lin. Vol. 13792.
Lecture Notes in Computer Science. Taipei, Taiwan: Springer, Cham, Switzerland,
Dec. 2022, pp. 130-160. DOI: 10.1007/978-3-031-22966-4_5 (cit. on p. 26).

Jake Loftus, Alexander May, Nigel P. Smart, and Frederik Vercauteren. “On CCA-
Secure Somewhat Homomorphic Encryption”. In: SAC 2011: 18th Annual Interna-
tional Workshop on Selected Areas in Cryptography. Ed. by Ali Miri and Serge Vau-
denay. Vol. 7118. Lecture Notes in Computer Science. Toronto, Ontario, Canada:
Springer Berlin Heidelberg, Germany, Aug. 2012, pp. 55-72. DOI: 10.1007/978-3~
642-28496-0_4 (cit. on p. 6).

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices and
Learning with Errors over Rings”. In: Advances in Cryptology - EUROCRYPT 2010.
Ed. by Henri Gilbert. Vol. 6110. Lecture Notes in Computer Science. French Riv-
iera: Springer Berlin Heidelberg, Germany, May 2010, pp. 1-23. DOIL: 10.1007/978~
3-642-13190-5_1 (cit. on p. 8).

142

https://eprint.iacr.org/2020/1481
https://github.com/virtualsecureplatform/TFHEpp
https://github.com/virtualsecureplatform/TFHEpp
https://doi.org/10.1007/978-3-030-92078-4_19
https://doi.org/10.1007/978-3-031-22966-4_6
https://arxiv.org/abs/1711.02213
http://arxiv.org/abs/1711.02213
https://eprint.iacr.org/2024/1740
https://eprint.iacr.org/2024/1740
https://doi.org/10.46586/tches.v2023.i1.501-537
https://doi.org/10.1007/978-3-030-77870-5_23
https://doi.org/10.1007/978-3-031-22966-4_5
https://doi.org/10.1007/978-3-642-28496-0_4
https://doi.org/10.1007/978-3-642-28496-0_4
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1

BIBLIOGRAPHY

[Mat20] K. Matsuoka. TFHEpp: pure C++ implementation of TFHE cryptosystem. https:
//github.com/virtualsecureplatform/TFHEpp. 2020 (cit. on pp. 5, 74).

[Max19] Alexander Maximov. AES MizColumn with 92 XOR gates. Cryptology ePrint Archive,
Report 2019/833. 2019. URL: https://eprint.iacr.org/2019/833 (cit. on pp. 57,
59, 69).

[Méa+16] Pierrick Méaux, Anthony Journault, Francois-Xavier Standaert, and Claude Carlet.
“Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts”. In: Ad-
vances in Cryptology — EUROCRYPT 2016, Part I. Ed. by Marc Fischlin and Jean-
Sébastien Coron. Vol. 9665. Lecture Notes in Computer Science. Vienna, Austria:
Springer Berlin Heidelberg, Germany, May 2016, pp. 311-343. por: 10.1007/978-
3-662-49890-3_13 (cit. on p. 82).

[MN24] Mark Manulis and Jérome Nguyen. “Fully Homomorphic Encryption Beyond IND-
CCA1 Security: Integrity Through Verifiability”. In: Advances in Cryptology — EU-
ROCRYPT 2024, Part II. Ed. by Marc Joye and Gregor Leander. Vol. 14652. Lec-
ture Notes in Computer Science. Zurich, Switzerland: Springer, Cham, Switzerland,
May 2024, pp. 63-93. DOI: 10.1007/978-3-031-58723-8_3 (cit. on p. 6).

[MPP24] Pierrick Méaux, Jeongeun Park, and Hilder V. L. Pereira. “Towards Practical Tran-
sciphering for FHE with Setup Independent of the Plaintext Space”. In: TACR
Communications in Cryptology (CiC) 1.1 (2024), p. 20. DOI: 10.62056/anxrxrxqi
(cit. on p. 93).

[MS88] Willi Meier and Othmar Staffelbach. “Fast Correlation Attacks on Stream Ciphers
(Extended Abstract)”. In: Advances in Cryptology — EUROCRYPT’88. Ed. by
C. G. Giinther. Vol. 330. Lecture Notes in Computer Science. Davos, Switzerland:
Springer Berlin Heidelberg, Germany, May 1988, pp. 301-314. po1: 10.1007 /3~
540-45961-8_28 (cit. on p. 84).

[NIS15] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-
tions. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf. 2015
(cit. on pp. 53, 79, 80).

[Niu425] Chao Niu, Zhicong Huang, Zhaomin Yang, Yi Chen, Liang Kong, Cheng Hong, and
Tao Wei. XBOOT: Free-XOR Gates for CKKS with Applications to Transciphering.
Cryptology ePrint Archive, Report 2025/074. 2025. URL: https://eprint.iacr.
org/2025/074 (cit. on pp. 92, 93).

[INLV11] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. “Can homomor-
phic encryption be practical?” In: Proceedings of the 3rd ACM Cloud Computing
Security Workshop, CCSW 2011, Chicago, IL, USA, October 21, 2011. Ed. by
Christian Cachin and Thomas Ristenpart. ACM, 2011, pp. 113-124. URL: https:
//dl.acm.org/citation.cfm?id=2046682 (cit. on p. 62).

[Pai99] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Residuos-
ity Classes”. In: Advances in Cryptology — EUROCRYPT’99. Ed. by Jacques Stern.
Vol. 1592. Lecture Notes in Computer Science. Prague, Czech Republic: Springer
Berlin Heidelberg, Germany, May 1999, pp. 223-238. po1: 10.1007/3-540-48910-
X_16 (cit. on p. 2).

[RADT7S] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. “On Data Banks and
Privacy Homomorphisms”. In: (1978). Ed. by Richard A. DeMillo, David P. Dobkin,
Anita K. Jones, and Richard J. Lipton, pp. 165-179 (cit. on p. 2).

143

https://github.com/virtualsecureplatform/TFHEpp
https://github.com/virtualsecureplatform/TFHEpp
https://eprint.iacr.org/2019/833
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-031-58723-8_3
https://doi.org/10.62056/anxrxrxqi
https://doi.org/10.1007/3-540-45961-8_28
https://doi.org/10.1007/3-540-45961-8_28
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://eprint.iacr.org/2025/074
https://eprint.iacr.org/2025/074
https://dl.acm.org/citation.cfm?id=2046682
https://dl.acm.org/citation.cfm?id=2046682
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16

BIBLIOGRAPHY

[Reg05] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptog-
raphy”. In: 87th Annual ACM Symposium on Theory of Computing. Ed. by Harold
N. Gabow and Ronald Fagin. Baltimore, MA, USA: ACM Press, May 2005, pp. 84—
93. por: 10.1145/1060590.1060603 (Cit. on pp. 7, 117).

[Sak-+21] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and Takanori
Isobe. “Rocca: An Efficient AES-based Encryption Scheme for Beyond 5G”. In:
TACR Transactions on Symmetric Cryptology 2021.2 (2021), pp. 1-30. 1sSN: 2519-
173X. DOI: 10.46586/tosc.v2021.12.1-30 (cit. on p. 84).

[Sha+24] Mingyao Shao, Yuejun Liu, Yongbin Zhou, and Yan Shao. On the Security of
LWE-based KEMs under Various Distributions: A Case Study of Kyber. Cryptology
ePrint Archive, Report 2024/1979. 2024. URL: https://eprint.iacr.org/2024/
1979 (cit. on p. 8).

[S1y99] V. I. Slyusar. “A family of face products of matrices and its properties”. en. In:
Cybernetics and Systems Analysis 35.3 (May 1999), pp. 379-384. 1ssN: 1060-0396,
1573-8337. DOI: 10.1007/BF02733426. URL: http://link.springer.com/10.
1007/BF02733426 (cit. on p. 102).

[ST25] National Institute of Standards and Technology. The NIST Threshold Call. 2025.
URL: https://csrc.nist.gov/Projects/threshold- cryptography (cit. on
pp. 5, 61, 64).

[Ste+09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. “Efficient Pub-
lic Key Encryption Based on Ideal Lattices”. In: Advances in Cryptology — ASI-
ACRYPT 2009. Ed. by Mitsuru Matsui. Vol. 5912. Lecture Notes in Computer
Science. Tokyo, Japan: Springer Berlin Heidelberg, Germany, Dec. 2009, pp. 617—
635. DOI: 10.1007/978-3-642-10366-7_36 (Cit. on p. 8).

[Sun+19] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani,
Vijayalakshmi Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan.
“Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Net-
works”. In: Advances in Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada. Ed. by Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett. 2019,
pp- 4901-4910. URL: https://proceedings . neurips . cc/paper/2019/hash/
65fc9fb4897a89789352e211ca2d398f-Abstract.html (cit. on p. 95).

[Tap23] Samuel Tap. “Construction de nouveaux outils de chiffrement homomorphe effi-
cace”. 2023URENS103. PhD thesis. 2023. URL: http://www.theses.fr/2023URENS103/
document (cit. on pp. 12, 14, 15, 117, 120, 122, 147, 150).

[Tod+18] Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang. “Fast
Correlation Attack Revisited - Cryptanalysis on Full Grain-128a, Grain-128, and
Grain-v1”. In: Advances in Cryptology — CRYPTO 2018, Part II. Ed. by Hovav
Shacham and Alexandra Boldyreva. Vol. 10992. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Cham, Switzerland, Aug. 2018, pp. 129-159.
DOI: 10.1007/978-3-319-96881-0_5 (Cit. on p. 84).

[Tra+23| Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud Sirdey.
“A Homomorphic AES Evaluation in Less than 30 Seconds by Means of TFHE”.
In: Proceedings of the 11th Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography, Copenhagen, Denmark, 26 November 2025. Ed. by Michael
Brenner, Anamaria Costache, and Kurt Rohloff. ACM, 2023, pp. 79-90. pOI1: 10.
1145/3605759 . 3625260. URL: https://doi.org/10.1145/3605759 . 3625260
(cit. on pp. 56, 57, 59, 61, 62, 64-67, 69, 72, 73).

144

https://doi.org/10.1145/1060590.1060603
https://doi.org/10.46586/tosc.v2021.i2.1-30
https://eprint.iacr.org/2024/1979
https://eprint.iacr.org/2024/1979
https://doi.org/10.1007/BF02733426
http://link.springer.com/10.1007/BF02733426
http://link.springer.com/10.1007/BF02733426
https://csrc.nist.gov/Projects/threshold-cryptography
https://doi.org/10.1007/978-3-642-10366-7_36
https://proceedings.neurips.cc/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
http://www.theses.fr/2023URENS103/document
http://www.theses.fr/2023URENS103/document
https://doi.org/10.1007/978-3-319-96881-0_5
https://doi.org/10.1145/3605759.3625260
https://doi.org/10.1145/3605759.3625260
https://doi.org/10.1145/3605759.3625260

BIBLIOGRAPHY

[Wei+23]

[Wei+24]

[XMSS]

[Yan+21]

[Zam22a]

[Zam?22b]

[Zam22c]

Bengiang Wei, Ruida Wang, Zhihao Li, Qinju Liu, and Xianhui Lu. “Fregata: Faster
Homomorphic Evaluation of AES via TFHE”. In: ISC 2023: 26th International
Conference on Information Security. Ed. by Elias Athanasopoulos and Bart Men-
nink. Vol. 14411. Lecture Notes in Computer Science. Groningen, The Netherlands:
Springer, Cham, Switzerland, Nov. 2023, pp. 392-412. pO1: 10.1007/978-3-031~
49187-0_20 (cit. on pp. 61, 62, 73, 74).

Bengiang Wei, Xianhui Lu, Ruida Wang, Kun Liu, Zhihao Li, and Kunpeng Wang.
“Thunderbird: Efficient Homomorphic Evaluation of Symmetric Ciphers in 3GPP
by combining two modes of TFHE”. In: TACR Transactions on Cryptographic Hard-
ware and Embedded Systems 2024.3 (2024), pp. 530-573. DOI: 10.46586/tches.
v2024.13.530-573 (cit. on pp. 61, 62, 73, 74).

Guo-Zhen Xiao and James L. Massey. “A spectral characterization of correlation-
immune combining functions”. In: IEEE Trans. Inf. Theory 34.3 (1988), pp. 569
571. poI: 10.1109/18.6037 (cit. on p. 84).

Zhaomin Yang, Xiang Xie, Huajie Shen, Shiying Chen, and Jun Zhou. TOTA:
Fully Homomorphic Encryption with Smaller Parameters and Stronger Security.
Cryptology ePrint Archive, Report 2021/1347. 2021. URL: https://eprint.iacr.
org/2021/1347 (cit. on p. 26).

Zama. concrete-optimizer : Concrete Optimizer is a Rust library that find the best
cryptographic parameters for a given TFHE homomorphic circuit. https://github.
com/zama-ai/concrete/tree/main/compilers/concrete-optimizer. 2022 (cit.
on pp. 49, 51, 52).

Zama. Concrete: TFHE Compiler that converts python programs into FHE equiva-
lent. https://github.com/zama-ai/concrete. 2022 (cit. on pp. 5, 114, 115).

Zama. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean
and Integer Arithmetics Over Encrypted Data. https://github.com/zama-ai/
tfhe-rs. 2022 (cit. on pp. 5, 33, 49-51, 58, 75, 91, 114, 116).

145

https://doi.org/10.1007/978-3-031-49187-0_20
https://doi.org/10.1007/978-3-031-49187-0_20
https://doi.org/10.46586/tches.v2024.i3.530-573
https://doi.org/10.46586/tches.v2024.i3.530-573
https://doi.org/10.1109/18.6037
https://eprint.iacr.org/2021/1347
https://eprint.iacr.org/2021/1347
https://github.com/zama-ai/concrete/tree/main/compilers/concrete-optimizer
https://github.com/zama-ai/concrete/tree/main/compilers/concrete-optimizer
https://github.com/zama-ai/concrete
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

BIBLIOGRAPHY

146

Appendix

A
. Supplementary Material on
Parameter Selection

A.1 More Details on the CJP Atomic Pattern

The goal of this appendix is to go through all steps of the CJP atomic pattern, to incrementally
construct the final noise formula of Equation 8.6. All the formulas of this section as well as their
proof can be found in [Tap23] and we use the notations introduced in Figure 8.1. To simplify
the formulas, we make the assumption that the bits of the secret key are produced by a balanced
uniform distribution in B.

Let us start by a ciphertext at a “nominal” level of noise (the noise in output of a PBS). Its
noise opgg can be expressed as:

532
PBS _2 (1)

UJQDBS = Nghort * EPBS(k + I)N 12 long

2¢
£ B KN

+ TNshort * 24%%68'3585 92 (2)
kN
+ Nghort * 5 (3)
TNshort kN 2
1——) . 4
+ 16 (2 > (4)

We estimated the noise for a wide range of parameters tuple to identify which terms can be
safely neglected. Figure A.1 shows the magnitude of each of the four term of the sum for each
parameter tuple. It is clear that Terms (3) and (4) are not useful.

As we are looping, we treat this noise as the input of the atomic pattern. Now, the noise
gets multiplied by v (which is the norm of the vector of coefficients of the linear combination).
Thus, the noise incoming in the Atomic pattern is:

2 2 2
Oin =V~ - OpBs (A1)

Within the PBS process, the first step to be done is the KeySwitch. The noise added in the

ciphertext by this procedure is only additive. This yields the following theoretical formula:

OKs = 012n (1)

2

Nlong q
L Mons @ 2
2 1287 @)

Nlong
3
> Bis

+ Niong Uks - Oshort * 12 °

147

APPENDIX A. SUPPLEMENTARY MATERIAL ON PARAMETER SELECTION

120 +
. ¢ ™ . a
®ow . g ¢ %
o °, oo “ . ose
100 - ‘ . . ° ® w? o ® e -
L] [] ¢ . (.. '. 8 ¢
e e i L “ L
o, L ™
.]
o 80- . . .
o s Term1l L L]]
£ .o . .
2 e Term2 o % o e .
3 e Term3 . °® o0 o et
o 60 “ e * . N e .
5] o Term4 ° . it . . 2
- - e o *p9) e © e %
(] f.g ™ .a‘ . .,:..ﬁ. [‘.. ..‘a.
.
§ .
40 [™ R .,
“ .m!ll'iﬁﬁn Y ® e “ °°
. L . . e
s o %o ctugeinseg "@.@:m“:' «mﬂimmﬁ
207 o o oo winng fp an P00 @ T o wria @G o Tulinee @@

100 200 300 400 500
Index of the set

Figure A.1: Analysis of the noise after the PBS

A simulation analogous to the one we did for the PBS step is represented on Figure A.2. It
shows that the third term can be safely discarded.

Then, the ModSwitchoperation is performed on the ciphertext. This brings its components
into the ring Zon. The noise is accordingly scaled down, and an extra error due to the rounding
errors (so-called drift and extensively studied in [Ber+25]) arises. This gives:

oMS = 4q—]\;2012<s (1)
1

+5 2 2)

- o 3)

4 oo (1)

LS 5

Figure A.3 shows that Terms (2), (3) and (5) can be neglected.

Note that [Ber+25] applies the same than us, but they work in Z, instead of Zyy, so the
formula looks different.

This point is the critical point in the atomic pattern, that is to say the point where the noise
is maximal. We rename accordingly ocitical-

Afterwards, the BlindRotatecreates a ciphertext whose noise is independent of the input.
Moreover, SampleExtractdoes not add any noise. So, we can write:

OBR = OPBS (A.2)

148

APPENDIX A. SUPPLEMENTARY MATERIAL ON PARAMETER SELECTION

125 -
100
75
o 207
K
T
|5 25 —
-
o
S 07
ee
—25 - e
L] e &
| s Terml L °]
—30 s Term?2 .
e Term3 . e ¢
_?5 - L]
L Term 4 ™
T T T T T T T
0 20 40 60 80 100 120
Index of the set
Figure A.2: Analysis of the noise after the KS
20 1
D —
_20 -
v o Term1l
=
B —40 - e Term2
‘gj ® Term 3
. s Term 4
S —601 e Term5
_80 -
.8 ALY e _ o®
—100 Wﬂmtﬂ ’HE"“'&HFMEH 5" ﬂr{ﬂ“
Tiete ST R g, O . ,w:-"'-ﬂ
Wuacacae N TN L YT

T T
0 20 40 60 80 100 120
Index of the set

Figure A.3: Analysis of the noise after the MS

149

APPENDIX A. SUPPLEMENTARY MATERIAL ON PARAMETER SELECTION

Putting it all together, we can write the formula of the critical variance with respect to a

given parameter tuple:

9 4N?

19 long

B2
Teritical = ~ 3~ |:V2) (nshort : <£PBS(,I€ +1)N PBS 52)

q
¢~ Bpgl kN)

+ Nshort 27,
uBgy 2
Mong q2
2 12ms
EBQ
2 KS

+ Nong * KS * Tghort * 12}

TNshort
+ o1

(A.3)

A.2 Operations Counts and Complexities in CJP Atomic Pat-

tern

Table A.1 gives an example of the cost formula for the CJP atomic pattern, as well as the linear
coefficients found by the linear regression. Note that the data in Columns 2 and 3 can be found
in [Tap23] while some notations are different. In particular, the keyswitch formula presented in
there consider the case of switching a LWE ciphertext of dimension n to a GLWE ciphertext of
dimension (k, N). In the CJP atomic pattern, we switch a LWE of dimension k- N to a LWE

of dimension ngyort -

Table A.1: Ezample of a cost formula for the CJP atomic pattern on the couple (tfhe-rs,server) with server
a machine equipped with an AMD Ryzen Threadripper PRO 7995WX with 96 cores, with a mazimal

frequency of 5.4 GHz and 528 GB of RAM.

Subroutine A; Countap(A;) Complexityp(A;) | LinearCoeff(A;)
Gadget decomposition in PBS Nshort - (K+1) - N lpBs 0.00111174
Gadget decomposition in KS k-N ks

Addition of ciphertexts (lks—1)-k-N Nshort 0

Coeff-wise multiplication of ciphertexts lks - k- N Nshort 0.00014987
FFT Nshort - (£ + 1) - Cpgs Nlog N 0

Multiplications in the FFT domain Nshors - £pas - (k +1)2 N 0.00034434
Additions in the FFT domain (k+1) - (lps-(k+1)—1) N 0

{FFT (k+1) Nlog N 0.1213151

A.3 Parameters for pe, = 2'%

Using ORPHEUS, we also generated sets of parameters that ensures an error probability of

They are listed in Table A.2.

150

2128

APPENDIX A. SUPPLEMENTARY MATERIAL ON PARAMETER SELECTION

Table A.2: Parameters sets generated by ORPHEUS for t fhe—rs running on server, targeting pe, = 27128,
The timings and the noise are measured and averaged on 500 runs. The runtimes are expressed in
milliseconds.

D Set Nshort | K | N | Oshort | Tlong | Bres | res | Bks | Iks R:el:fgle log (perr)
1 bit | ORPHEUS (server) || 660 | 3| 512 | 247 | 2271 | 920 1 2% | 4 7.0 -129
2 bits | ORPHEUS (server) || 714 | 2 | 1024 | 2483 | 2138 | 923 1 23 4 10.1 -128
3 bits | ORPHEUS (server) || 749 | 1| 2048 | 2474 | 2138 | 922 1 23 | 5 12.9 -128
4 bits | ORPHEUS (server) || 862 | 1 | 4096 | 2456 | 220 | 921 1 23 5 27.3 -130
5 bits | ORPHEUS (server) || 916 | 1 | 8192 | 21 | 220 | 922 1 24 | 4 58.2 -129
6 bits | ORPHEUS (server) || 969 | 1 | 16384 | 2417 | 220 | 223 1 24 5 125.6 -128

151

RESUME

Dans cette these, nous étudions le chiffrement homomorphe, une technique cryptographique qui permet d’effectuer des
calculs directement sur des données chiffrées, sans nécessiter de déchiffrement préalable. Ce domaine a connu un essor
spectaculaire au cours des quinze dernieres années, avec I'émergence de nombreux schémas de chiffrement de plus
en plus performants. Néanmoins, les calculs homomorphes restent encore nettement plus colteux que leurs équivalents
classiques, ce qui freine leur adoption dans des applications concrétes.

Nous nous concentrons dans ce travail sur I'un des schémas les plus prometteurs : TFHE. Nous proposons de nouvelles
techniques destinées a accélérer les calculs homomorphes pour différents cas d’usage. En exploitant un encodage
innovant des messages, nous commengons par convevoir des algorithmes plus efficaces pour I'évaluation homomorphe
de fonctions booléennes.

Dans un second temps, nous abordons le probléme du transchiffrement, une approche visant a réduire la consommation
de bande passante lors de la transmission de données chiffrées de maniere homomorphe. Cela nécessite I'évaluation
d’un algorithme de chiffrement symétriqgue dans le domaine homomorphe. Pour cela, et toujours en nous appuyant sur
notre technique d’encodage, nous développons une implémentation homomorphe du chiffrement standard AES, plus
rapide que celles de I'état de I'art, et contribuons a la conception d’un chiffrement par flot spécifiquement optimisé pour
le transchiffrement.

Nous poursuivons avec une contribution qui étend les capacités de TFHE, en lui permettant de fonctionner sur des
espaces de messages plus larges. Cette amélioration est possible grace a un nouvel algorithme d’évaluation de table de
correspondances dans ces espaces étendus.

Enfin, nous proposons une méthode conceptuellement simple et pratique pour générer des jeux de parametres assurant
sécurité, exactitude des calculs et efficacité, facilitant ainsi 'usage de TFHE dans les applications concreétes.

MOTS CLES

Mots-Clés * Cryptographie, Chiffrement complétement homomorphe, Calcul sécurisé

ABSTRACT

In this thesis, we study fully homomorphic encryption, a cryptographic technique that allows computations to be performed
directly on encrypted data, without requiring prior decryption. This field has experienced remarkable growth over the past
fifteen years, with the emergence of increasingly efficient encryption schemes. Nevertheless, homomorphic computations
remain significantly more costly than their classical counterparts, which still hinders their adoption in practical applications.
In this work, we focus on one of the most promising schemes: TFHE. We propose new techniques aimed at accelerating
homomorphic computations for various use cases. By leveraging an innovative message encoding strategy, we begin by
designing more efficient algorithms for the homomorphic evaluation of Boolean functions.

Next, we address the problem of transciphering, an approach that seeks to reduce bandwidth consumption during the
transmission of homomorphically encrypted data. This requires the evaluation of a symmetric encryption algorithm within
the homomorphic domain. Still relying on our encoding technique, we develop a homomorphic implementation of the
standard AES encryption scheme that outperforms state-of-the-art implementations, and present our contribution to the
design of a stream cipher specifically optimized for transciphering.

We continue with a contribution that extends the capabilities of TFHE by enabling it to operate over larger message
spaces. This improvement is made possible by a new algorithm for evaluating look-up tables in these extended spaces.

Finally, we propose a conceptually simple and practical method for generating parameter sets that ensure security, cor-
rectness, and efficiency, thereby facilitating the use of TFHE in real-world applications.

KEYWORDS

Keywords * Cryptography, Fully Homomorphic Encryption, Secure computation

	Résumé
	Abstract
	Acknowledgments
	How to read this thesis ?
	Notations
	Acronyms
	Introduction en Français
	Introduction to FHE
	Motivation
	The Breakthrough of Bootstrapping
	Current Landscape of the FHE Schemes and Libraries
	Security Properties

	Presentation of the TFHE Scheme
	Hardness Assumptions: LWE and GLWE Problems
	Torus Equivalence and Discretization
	Encryption and Decryption in TFHE
	Linear Homomorphisms
	Keyswitching
	External Products
	Programmable Bootstrapping
	An Informal Overview of Blind Rotation
	The Full Algorithm

	Performances of the PBS

	The Negacyclicity Problem
	Basics on Negacyclicity
	The Classical Countermeasure: the Bit of Padding
	Other Countermeasures Avoiding the Bit of Padding
	Our Contribution: the Odd Plaintext Modulus
	Conclusion

	Accelerating Homomorphic Boolean Functions
	Preliminaries on Boolean Functions and Boolean Circuits
	State of the Art on Homomorphic Boolean Computations
	Boolean Encoding over Zp and Homomorphic Evaluation Strategy Between B and Zp
	Encoding of B over Zp
	A New Strategy for Homomorphic Boolean Evaluation
	Encoding Switching

	Algorithms of Construction of Gadgets
	Reduction of the Search Space
	Formalization of the Search Problem
	Algorithm
	Performances Measurements
	An Efficient Sieving Heuristic to Find Suitable Encodings

	Scaling our Approach to any Boolean Circuit
	Graph of Subcircuits
	Heuristics to Find a Small Graph
	Parallelization of the Execution of the Graph

	Implementation Considerations: Adaptation of the Parameters Selection and of the tfhe-rs Library
	Crafting of Parameters
	Concrete Implementations of p-Encodings and Homomorphic Functions in tfhe-rs

	Application to Cryptographic Primitives
	SIMON Block Cipher
	The Trivium Stream Cipher
	Keccak Permutation
	Ascon
	AES
	Summary of Applications

	Conclusion

	Accelerating Homomorphic AES Evaluation
	Introduction to Transciphering
	Preliminaries on AES
	Some Building Blocks for LUT-based Evaluation
	AES Subroutines as LUTs
	LUTs Evaluation

	Generalization of p-encodings to the Arithmetic Case
	Design of Hippogryph
	Experimental Results
	State-Of-The-Art Homomorphic AES Executions
	Results

	Conclusion

	Better Transciphering with Transistor
	Constraints for a TFHE-friendly Stream Cipher
	Description of Transistor
	Overall Structure
	Detailed Description
	Controlling the Noise Evolution

	A Brief Summary of the Security Analysis
	Performances of Transciphering with Transistor
	Key Wrapping and Bandwidth in TFHE Transciphering
	Transciphering vs. Data Representation
	Detailed Homomorphic Implementations
	TFHE Parameters
	Performances
	Comparisons to the State of the Art

	Conclusion

	Accelerating Large Look-Up Tables
	Context and Formalisation of the Problem
	Overview of the Method
	Building Blocks
	Core of the Method

	Finding Efficient Decompositions
	Construction of an Efficient Decomposition for the First Output
	Generalization to Several Outputs

	Experimental Results
	Conclusion

	A Practical Solution for Parameter Selection
	TFHE Parameter Selection Problem
	TFHE Parameters
	The Security Constraint
	The Correctness Constraint
	The Optimization Problem

	Our Solution
	Reducing the Parameter Space
	Modeling the Execution Time
	The Optimization Process

	Presentation of ORPHEUS
	Experimental Results
	Conclusion

	Conclusion
	Bibliography
	Supplementary Material on Parameter Selection
	More Details on the CJP Atomic Pattern
	Operations Counts and Complexities in CJP Atomic Pattern
	Parameters for perr= 2128

