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• TFHE and a wishlist

• Design of Transistor

2 / 62



FHE in one slide

Client

KeyGen()

EncFHE

Server

3 / 62



FHE in one slide

Client

KeyGen()

EncFHE

Server

4 / 62



FHE in one slide

Client

KeyGen()

EncFHE

Server

5 / 62



FHE in one slide

Client

KeyGen()

EncFHE

Server

6 / 62



FHE in one slide

Client

KeyGen()

EncFHE

Server

7 / 62



FHE in one slide

Client

EncFHE

Server

DecFHE

8 / 62



FHE in one slide

Client

EncFHE

Server

DecFHE

9 / 62



The Bandwidth Problem

Example: Layout of a TFHE ciphertext.

To encrypt one bit m:

c = (a0, . . . , an−1, b)

(n+ 1) elements of Zq, with q = 264 and 500 ≤ n ≤ 1500. Roughly, expansion factor of
1000× 64 = 64000.

Possible to generate the ai’s with a seed: expansion factor comes down to 128 + 64 = 192.

How to reduce this bandwith overhead ?
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Which symmetric cipher ?

Using standard ciphers ?

• Evaluation of AES is too slow due to
large Sbox size

• Lightweight ciphers such as ASCON,
PRESENT, ... more promising, but still
not fast enough

Or FHE-tailored ones ?

• Active line of research

• But often relies on innovative primitives
(i.e. often broken)

With Transistor, we look for the best of both worlds (fast in FHE and secure)
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TFHE

• Plaintext space : Zp with p of a few bits.

• Secret Key: s⃗ = (s0, . . . , sn−1) ∈ {0, 1}n

• Encryption: c⃗ = (a0, . . . , an−1, b =
∑n−1

i=0 ai · si + q
p ·m+ e) ∈ Zn+1

q with a⃗ random and e
a small Gaussian noise.

• Linear homomorphism:
• Sum of ciphertexts
• Multiplication by a plaintext

Very fast. Increase the noise.
• Programmable Bootstrapping (PBS):

• Evaluates a Look-Up Table
• Resets the noise to a nominal level

Very slow. Gets even slower as p increases.
• Negacyclicity problem:

• If p is even, restricts some homomorphic operations.
• Disappears when p is odd
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Our wishlist for a TFHE-friendly cipher

• A prime field

• As little non-linear operations as possible

• Keep noise growth acceptable
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Figure: A high level view of Transistor.
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MixColumns

We opted for a 4× 4 Maximum Distance Separable (MDS) to ensure optimal diffusion. The
matrix we chose is

M =

[
2 1 1 1
1 −1 1 −2
1 1 −2 −1
1 −2 −1 1

]
. (1)

We verified that there is no MDS matrix in F17 with coefficients in {−1, 1} by exhaustively
testing all such matrices. By testing all matrices with coefficients in {−2,−1, 1, 2}, we found
a total of 30 720 MDS matrices with an ℓ2-norm of 7. We selected M for its symmetries,
particularly because it is its own transpose.
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Silent LFSR

(LFSR)

• Naive approach would be to maintain an encrypted state, and update it by computing a
linear combination with the feedback coefficients.

• However, this method would cause the noise in the state to accumulate over time

• Solution: Computing on the fly the coefficients of the linear combination in clear

The noise variance in the output of the silent LFSR remains stable over
time, without using any PBS.
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The LFSR are loaded with fresh ciphertexts of noise σfresh
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The output of a PBS has noise independent from the noise of the input. We just have:

σPBS ≫ σfresh
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ShiftRows simply reorders the ciphertexts, thus adds no noise.
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The variance is multiplied by the norm of the diffusion matrix

σ2
MC = L2

MC · σ2
PBS.
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Variances are summed.
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There are two “hot spots” where things can go wrong:

• Right before the PBS (risk of false bootstrapping result)

• At the output of the cipher (risk of producing a keystream of noise too high, thus
unusable)
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Noise Management
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As σMC ≫ σ2
K and σPBS ≫ σ2

W , the noise produced by the LFSRs is negligible.

Takeaway 1: No Restriction on the size of the LFSRs
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Takeaway 2 : Dimensioning the TFHE parameters for Transistor can be reduced to
select parameters for a simple PBS
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Performances

Table: Execution timings of FRAST and Transistor.

Cipher perr Setup Latency Throughput

FRAST 2−80 25 s (8
threads)

6.2 s 20.66 bits/s

Transistor 2−128 No 251 ms 65.10 bits/s
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Bonus: Takeways on cryptanalysis (Disclaimer: I have no clue)

A quick tour of the security arguments:

• Time-Memory-Data Trade-Offs put a limit on the length of the keystream we can
generate with a single key: 231.

• Guess-and-Determine: as one quarter of the state is used to generate the keystream, one
has to guess 3

4 of the LFSR, which puts a lower bound on its size. |K| = 64 and W| = 32

• The paper demonstrates that Three consecutive outputs are statistically
independent of the secret key. The proof only requires the matrix of MixColumns to
be MDS instead of automatic search methods like in Rocca.

• Linear approximation, Fast Correlation attacks, Algebraic Attacks
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