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Part 1

FHE and transciphering
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Which symmetric cipher ?

A standard one ?

• Evaluation of AES [GHS12] is too
slow due to large Sbox size

• Lightweight ciphers such as ASCON,
PRESENT, ... more promising, but still
not fast enough

Or a FHE-tailored one ?
• Active line of research
[BOS23, AGHM24, DJL+24, CCH+24]

• Nonstandard design choices: leads
to weaker confidence in security

With Transistor, we look for the best of both worlds (fast in FHE and secure)
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Part 2

TFHE and its specifies



Basics on TFHE

• Plaintext space : ℤ𝑝 with 𝑝 of a few bits.
• Secret Key:

⃗𝑠 = (𝑠0,… , 𝑠𝑛−1) ∈ {0, 1}𝑛.

• Encryption:
⃗𝑐 = (𝑎0,… , 𝑎𝑛−1, 𝑏) ∈ ℤ𝑛+1𝑞

with:
𝑏 = ⟨ ⃗𝑎, ⃗𝑠⟩ +

𝑞
𝑝 ⋅ 𝑚 + 𝑒.

⃗𝑎 is random and 𝑒 is a small Gaussian noise.
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Homomorphisms in TFHE

• Linear homomorphisms: Very fast, but increase the noise.
• Sum of ciphertexts
• Multiplication by a constant

• Programmable Bootstrapping (PBS): Very slow. Gets even slower as 𝑝 increases.
• Resets the noise to a nominal level
• Evaluates a Look-Up Table from ℤ𝑝 to ℤ𝑝.

• Negacyclicity problem:
• If 𝑝 is even, restricts the functions that can be evaluated.
• Disappears when 𝑝 is odd
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Our wishlist for a TFHE-friendly cipher

• A small prime field of odd characteristic...

to avoid the negacyclicity problem and ease the design.

• As little non-linear operations as possible...

to be fast (low number of PBS).

• A controlled noise growth...

to guarantee the correctness of the computations.
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Part 3

Description of Transistor



Design of Transistor

Prime field: 𝔽17

𝒦 (Key schedule)

𝒲 (whitening LFSR)
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𝜙

⊞ Output
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(c) MC. (d) 𝜙.
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MixColumns

The matrix we chose for MixColumns is:

𝑀 = [
2 1 1 1
1 −1 1 −2
1 1 −2 −1
1 −2 −1 1

] .

• Matrix MDS to ensure optimal diffusion,
• Symmetric,
• Minimal ℓ2-norm of 7→ important for noise management.
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Silent LFSR

LFSR

• Naive approach : linearly update the state at each clock.

• Problem: the noise accumulates over time.
• Solution: Computing on the fly the coefficients of the linear combination in clear

The noise variance in the output of the silent LFSR remains stable over
time, without using any PBS.
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Part 4

Noise Management



Noise Management

𝒦 (Key Schedule)

𝒲 (whitening LFSR)
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⊞ 𝑍𝑖

Risk of false bootstrapping result. Risk of over-noisy keystream.
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Noise Management
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Takeaway 2 : Dimensioning the TFHE parameters can be reduced to select parameters for a simple PBS
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Part 5

Cryptanalysis



TMDTO and Guess & Determine

Time-Memory Data Trade-Offs: Dimensions of the LFSRs: |𝒦| = 64 and |𝒲| = 32
elements of 𝔽17. Ensures a limit on the keystream of 231 digits with a single key.

Guess-and-Determine: The filtering procedure of Transistor shows that the attacker
has to guess the content of the whithening LFSR and 12

16
|𝒲| digits, leading to a

complexity:

𝑝
12
16 |𝒦|+|𝒲| ≈ 2294.
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Correlation Attacks against Transistor

We prove that:

Three consecutive outputs are statistically independent from the secret key.

Consequence: The correlation of linear relations between the content of key-LFSR and
output 4-digits sequence is very low:

||𝐶(4)(𝛼, 𝛽)||
2
≤ 2−35.98

Main arguments of the proof:
• Amount of active S-boxes over 𝑛 rounds,
• Modulus of the Fourier coefficients of the S-box.

Any correlation attack based on the span of a linear trail requires 241.5 digits of the
output sequence.
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Andmore!

More analysis in the paper about:
• Linear Distinguishers on the keystream,
• Algebraic attacks.
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Part 6

Performances



Performances

Cipher Setup Latency Throughput Communication Costa 𝑝err
Trivium [BOS23] (128 thr.) 2259 ms 121 ms 529 bits/s 640 B + 35.6 MB † 2−40

Kreyvium [BOS23] (128 thr.) 2883 ms 150 ms 427 bits/s 1024 B + 35.6 MB † 2−40

Margrethe [AGHM24]
No 27.2 ms 147.06 bits/s 64 MB * < 2−1000

No 54.2 ms 73.8 bits/s 128 MB * < 2−1000

PRF-based construction [DJL+24] No 5.675 ms 881 bits/s 32.8 MB = 8.9 MB + 23.9 MB 2−64

FRAST [CCH+24] 25 s (8 thr.) 6.2 s 20.66 bits/s 34.05 MB = 148 KB + 33.91 MB 2−80

Transistor No 251 ms 65.10 bits/s 13.54 MB = 780 B + 12.78 MB 2−128
a Includes size of encrypted symmetric key + size of evaluation keys. † Values recomputed from the data
of the papers. For consistency’s sake, we applied the classical technique of ciphertexts compression to
estimate the communication cost.
* In Margrethe, no keyswitching nor bootstrapping keys are required.
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Thank You !

Prime field: 𝔽17

𝒦 (Key schedule)

𝒲 (whitening LFSR)

⊞ SD SR MC

FSM state

𝜙

⊞ 𝑍𝑡

16

4

𝜋
𝜋
𝜋
𝜋

𝜋
𝜋
𝜋
𝜋

𝜋
𝜋
𝜋
𝜋

𝜋
𝜋
𝜋
𝜋

(a) SD. (b) SR.

𝑀 𝑀 𝑀 𝑀

(c) MC. (d) 𝜙.
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